format-inl.h 102 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644
  1. // Formatting library for C++ - implementation
  2. //
  3. // Copyright (c) 2012 - 2016, Victor Zverovich
  4. // All rights reserved.
  5. //
  6. // For the license information refer to format.h.
  7. #ifndef FMT_FORMAT_INL_H_
  8. #define FMT_FORMAT_INL_H_
  9. #include <algorithm>
  10. #include <cctype>
  11. #include <cerrno> // errno
  12. #include <climits>
  13. #include <cmath>
  14. #include <cstdarg>
  15. #include <cstring> // std::memmove
  16. #include <cwchar>
  17. #include <exception>
  18. #ifndef FMT_STATIC_THOUSANDS_SEPARATOR
  19. # include <locale>
  20. #endif
  21. #ifdef _WIN32
  22. # include <io.h> // _isatty
  23. #endif
  24. #include "format.h"
  25. FMT_BEGIN_NAMESPACE
  26. namespace detail {
  27. FMT_FUNC void assert_fail(const char* file, int line, const char* message) {
  28. // Use unchecked std::fprintf to avoid triggering another assertion when
  29. // writing to stderr fails
  30. std::fprintf(stderr, "%s:%d: assertion failed: %s", file, line, message);
  31. // Chosen instead of std::abort to satisfy Clang in CUDA mode during device
  32. // code pass.
  33. std::terminate();
  34. }
  35. FMT_FUNC void throw_format_error(const char* message) {
  36. FMT_THROW(format_error(message));
  37. }
  38. #ifndef _MSC_VER
  39. # define FMT_SNPRINTF snprintf
  40. #else // _MSC_VER
  41. inline int fmt_snprintf(char* buffer, size_t size, const char* format, ...) {
  42. va_list args;
  43. va_start(args, format);
  44. int result = vsnprintf_s(buffer, size, _TRUNCATE, format, args);
  45. va_end(args);
  46. return result;
  47. }
  48. # define FMT_SNPRINTF fmt_snprintf
  49. #endif // _MSC_VER
  50. FMT_FUNC void format_error_code(detail::buffer<char>& out, int error_code,
  51. string_view message) FMT_NOEXCEPT {
  52. // Report error code making sure that the output fits into
  53. // inline_buffer_size to avoid dynamic memory allocation and potential
  54. // bad_alloc.
  55. out.try_resize(0);
  56. static const char SEP[] = ": ";
  57. static const char ERROR_STR[] = "error ";
  58. // Subtract 2 to account for terminating null characters in SEP and ERROR_STR.
  59. size_t error_code_size = sizeof(SEP) + sizeof(ERROR_STR) - 2;
  60. auto abs_value = static_cast<uint32_or_64_or_128_t<int>>(error_code);
  61. if (detail::is_negative(error_code)) {
  62. abs_value = 0 - abs_value;
  63. ++error_code_size;
  64. }
  65. error_code_size += detail::to_unsigned(detail::count_digits(abs_value));
  66. auto it = buffer_appender<char>(out);
  67. if (message.size() <= inline_buffer_size - error_code_size)
  68. format_to(it, FMT_STRING("{}{}"), message, SEP);
  69. format_to(it, FMT_STRING("{}{}"), ERROR_STR, error_code);
  70. FMT_ASSERT(out.size() <= inline_buffer_size, "");
  71. }
  72. FMT_FUNC void report_error(format_func func, int error_code,
  73. const char* message) FMT_NOEXCEPT {
  74. memory_buffer full_message;
  75. func(full_message, error_code, message);
  76. // Don't use fwrite_fully because the latter may throw.
  77. if (std::fwrite(full_message.data(), full_message.size(), 1, stderr) > 0)
  78. std::fputc('\n', stderr);
  79. }
  80. // A wrapper around fwrite that throws on error.
  81. inline void fwrite_fully(const void* ptr, size_t size, size_t count,
  82. FILE* stream) {
  83. size_t written = std::fwrite(ptr, size, count, stream);
  84. if (written < count) FMT_THROW(system_error(errno, "cannot write to file"));
  85. }
  86. #ifndef FMT_STATIC_THOUSANDS_SEPARATOR
  87. template <typename Locale>
  88. locale_ref::locale_ref(const Locale& loc) : locale_(&loc) {
  89. static_assert(std::is_same<Locale, std::locale>::value, "");
  90. }
  91. template <typename Locale> Locale locale_ref::get() const {
  92. static_assert(std::is_same<Locale, std::locale>::value, "");
  93. return locale_ ? *static_cast<const std::locale*>(locale_) : std::locale();
  94. }
  95. template <typename Char>
  96. FMT_FUNC auto thousands_sep_impl(locale_ref loc) -> thousands_sep_result<Char> {
  97. auto& facet = std::use_facet<std::numpunct<Char>>(loc.get<std::locale>());
  98. auto grouping = facet.grouping();
  99. auto thousands_sep = grouping.empty() ? Char() : facet.thousands_sep();
  100. return {std::move(grouping), thousands_sep};
  101. }
  102. template <typename Char> FMT_FUNC Char decimal_point_impl(locale_ref loc) {
  103. return std::use_facet<std::numpunct<Char>>(loc.get<std::locale>())
  104. .decimal_point();
  105. }
  106. #else
  107. template <typename Char>
  108. FMT_FUNC auto thousands_sep_impl(locale_ref) -> thousands_sep_result<Char> {
  109. return {"\03", FMT_STATIC_THOUSANDS_SEPARATOR};
  110. }
  111. template <typename Char> FMT_FUNC Char decimal_point_impl(locale_ref) {
  112. return '.';
  113. }
  114. #endif
  115. } // namespace detail
  116. #if !FMT_MSC_VER
  117. FMT_API FMT_FUNC format_error::~format_error() FMT_NOEXCEPT = default;
  118. #endif
  119. FMT_FUNC std::system_error vsystem_error(int error_code, string_view format_str,
  120. format_args args) {
  121. auto ec = std::error_code(error_code, std::generic_category());
  122. return std::system_error(ec, vformat(format_str, args));
  123. }
  124. namespace detail {
  125. template <> FMT_FUNC int count_digits<4>(detail::fallback_uintptr n) {
  126. // fallback_uintptr is always stored in little endian.
  127. int i = static_cast<int>(sizeof(void*)) - 1;
  128. while (i > 0 && n.value[i] == 0) --i;
  129. auto char_digits = std::numeric_limits<unsigned char>::digits / 4;
  130. return i >= 0 ? i * char_digits + count_digits<4, unsigned>(n.value[i]) : 1;
  131. }
  132. // log10(2) = 0x0.4d104d427de7fbcc...
  133. static constexpr uint64_t log10_2_significand = 0x4d104d427de7fbcc;
  134. template <typename T = void> struct basic_impl_data {
  135. // Normalized 64-bit significands of pow(10, k), for k = -348, -340, ..., 340.
  136. // These are generated by support/compute-powers.py.
  137. static constexpr uint64_t pow10_significands[87] = {
  138. 0xfa8fd5a0081c0288, 0xbaaee17fa23ebf76, 0x8b16fb203055ac76,
  139. 0xcf42894a5dce35ea, 0x9a6bb0aa55653b2d, 0xe61acf033d1a45df,
  140. 0xab70fe17c79ac6ca, 0xff77b1fcbebcdc4f, 0xbe5691ef416bd60c,
  141. 0x8dd01fad907ffc3c, 0xd3515c2831559a83, 0x9d71ac8fada6c9b5,
  142. 0xea9c227723ee8bcb, 0xaecc49914078536d, 0x823c12795db6ce57,
  143. 0xc21094364dfb5637, 0x9096ea6f3848984f, 0xd77485cb25823ac7,
  144. 0xa086cfcd97bf97f4, 0xef340a98172aace5, 0xb23867fb2a35b28e,
  145. 0x84c8d4dfd2c63f3b, 0xc5dd44271ad3cdba, 0x936b9fcebb25c996,
  146. 0xdbac6c247d62a584, 0xa3ab66580d5fdaf6, 0xf3e2f893dec3f126,
  147. 0xb5b5ada8aaff80b8, 0x87625f056c7c4a8b, 0xc9bcff6034c13053,
  148. 0x964e858c91ba2655, 0xdff9772470297ebd, 0xa6dfbd9fb8e5b88f,
  149. 0xf8a95fcf88747d94, 0xb94470938fa89bcf, 0x8a08f0f8bf0f156b,
  150. 0xcdb02555653131b6, 0x993fe2c6d07b7fac, 0xe45c10c42a2b3b06,
  151. 0xaa242499697392d3, 0xfd87b5f28300ca0e, 0xbce5086492111aeb,
  152. 0x8cbccc096f5088cc, 0xd1b71758e219652c, 0x9c40000000000000,
  153. 0xe8d4a51000000000, 0xad78ebc5ac620000, 0x813f3978f8940984,
  154. 0xc097ce7bc90715b3, 0x8f7e32ce7bea5c70, 0xd5d238a4abe98068,
  155. 0x9f4f2726179a2245, 0xed63a231d4c4fb27, 0xb0de65388cc8ada8,
  156. 0x83c7088e1aab65db, 0xc45d1df942711d9a, 0x924d692ca61be758,
  157. 0xda01ee641a708dea, 0xa26da3999aef774a, 0xf209787bb47d6b85,
  158. 0xb454e4a179dd1877, 0x865b86925b9bc5c2, 0xc83553c5c8965d3d,
  159. 0x952ab45cfa97a0b3, 0xde469fbd99a05fe3, 0xa59bc234db398c25,
  160. 0xf6c69a72a3989f5c, 0xb7dcbf5354e9bece, 0x88fcf317f22241e2,
  161. 0xcc20ce9bd35c78a5, 0x98165af37b2153df, 0xe2a0b5dc971f303a,
  162. 0xa8d9d1535ce3b396, 0xfb9b7cd9a4a7443c, 0xbb764c4ca7a44410,
  163. 0x8bab8eefb6409c1a, 0xd01fef10a657842c, 0x9b10a4e5e9913129,
  164. 0xe7109bfba19c0c9d, 0xac2820d9623bf429, 0x80444b5e7aa7cf85,
  165. 0xbf21e44003acdd2d, 0x8e679c2f5e44ff8f, 0xd433179d9c8cb841,
  166. 0x9e19db92b4e31ba9, 0xeb96bf6ebadf77d9, 0xaf87023b9bf0ee6b,
  167. };
  168. #if FMT_GCC_VERSION && FMT_GCC_VERSION < 409
  169. # pragma GCC diagnostic push
  170. # pragma GCC diagnostic ignored "-Wnarrowing"
  171. #endif
  172. // Binary exponents of pow(10, k), for k = -348, -340, ..., 340, corresponding
  173. // to significands above.
  174. static constexpr int16_t pow10_exponents[87] = {
  175. -1220, -1193, -1166, -1140, -1113, -1087, -1060, -1034, -1007, -980, -954,
  176. -927, -901, -874, -847, -821, -794, -768, -741, -715, -688, -661,
  177. -635, -608, -582, -555, -529, -502, -475, -449, -422, -396, -369,
  178. -343, -316, -289, -263, -236, -210, -183, -157, -130, -103, -77,
  179. -50, -24, 3, 30, 56, 83, 109, 136, 162, 189, 216,
  180. 242, 269, 295, 322, 348, 375, 402, 428, 455, 481, 508,
  181. 534, 561, 588, 614, 641, 667, 694, 720, 747, 774, 800,
  182. 827, 853, 880, 907, 933, 960, 986, 1013, 1039, 1066};
  183. #if FMT_GCC_VERSION && FMT_GCC_VERSION < 409
  184. # pragma GCC diagnostic pop
  185. #endif
  186. static constexpr uint64_t power_of_10_64[20] = {
  187. 1, FMT_POWERS_OF_10(1ULL), FMT_POWERS_OF_10(1000000000ULL),
  188. 10000000000000000000ULL};
  189. };
  190. // This is a struct rather than an alias to avoid shadowing warnings in gcc.
  191. struct impl_data : basic_impl_data<> {};
  192. #if __cplusplus < 201703L
  193. template <typename T>
  194. constexpr uint64_t basic_impl_data<T>::pow10_significands[];
  195. template <typename T> constexpr int16_t basic_impl_data<T>::pow10_exponents[];
  196. template <typename T> constexpr uint64_t basic_impl_data<T>::power_of_10_64[];
  197. #endif
  198. template <typename T> struct bits {
  199. static FMT_CONSTEXPR_DECL const int value =
  200. static_cast<int>(sizeof(T) * std::numeric_limits<unsigned char>::digits);
  201. };
  202. // Returns the number of significand bits in Float excluding the implicit bit.
  203. template <typename Float> constexpr int num_significand_bits() {
  204. // Subtract 1 to account for an implicit most significant bit in the
  205. // normalized form.
  206. return std::numeric_limits<Float>::digits - 1;
  207. }
  208. // A floating-point number f * pow(2, e).
  209. struct fp {
  210. uint64_t f;
  211. int e;
  212. static constexpr const int num_significand_bits = bits<decltype(f)>::value;
  213. constexpr fp() : f(0), e(0) {}
  214. constexpr fp(uint64_t f_val, int e_val) : f(f_val), e(e_val) {}
  215. // Constructs fp from an IEEE754 floating-point number. It is a template to
  216. // prevent compile errors on systems where n is not IEEE754.
  217. template <typename Float> explicit FMT_CONSTEXPR fp(Float n) { assign(n); }
  218. template <typename Float>
  219. using is_supported = bool_constant<sizeof(Float) == sizeof(uint64_t) ||
  220. sizeof(Float) == sizeof(uint32_t)>;
  221. // Assigns d to this and return true iff predecessor is closer than successor.
  222. template <typename Float, FMT_ENABLE_IF(is_supported<Float>::value)>
  223. FMT_CONSTEXPR bool assign(Float n) {
  224. // Assume float is in the format [sign][exponent][significand].
  225. const int num_float_significand_bits =
  226. detail::num_significand_bits<Float>();
  227. const uint64_t implicit_bit = 1ULL << num_float_significand_bits;
  228. const uint64_t significand_mask = implicit_bit - 1;
  229. constexpr bool is_double = sizeof(Float) == sizeof(uint64_t);
  230. auto u = bit_cast<conditional_t<is_double, uint64_t, uint32_t>>(n);
  231. f = u & significand_mask;
  232. const uint64_t exponent_mask = (~0ULL >> 1) & ~significand_mask;
  233. int biased_e =
  234. static_cast<int>((u & exponent_mask) >> num_float_significand_bits);
  235. // The predecessor is closer if n is a normalized power of 2 (f == 0) other
  236. // than the smallest normalized number (biased_e > 1).
  237. bool is_predecessor_closer = f == 0 && biased_e > 1;
  238. if (biased_e != 0)
  239. f += implicit_bit;
  240. else
  241. biased_e = 1; // Subnormals use biased exponent 1 (min exponent).
  242. const int exponent_bias = std::numeric_limits<Float>::max_exponent - 1;
  243. e = biased_e - exponent_bias - num_float_significand_bits;
  244. return is_predecessor_closer;
  245. }
  246. template <typename Float, FMT_ENABLE_IF(!is_supported<Float>::value)>
  247. bool assign(Float) {
  248. FMT_ASSERT(false, "");
  249. return false;
  250. }
  251. };
  252. // Normalizes the value converted from double and multiplied by (1 << SHIFT).
  253. template <int SHIFT = 0> FMT_CONSTEXPR fp normalize(fp value) {
  254. // Handle subnormals.
  255. const uint64_t implicit_bit = 1ULL << num_significand_bits<double>();
  256. const auto shifted_implicit_bit = implicit_bit << SHIFT;
  257. while ((value.f & shifted_implicit_bit) == 0) {
  258. value.f <<= 1;
  259. --value.e;
  260. }
  261. // Subtract 1 to account for hidden bit.
  262. const auto offset =
  263. fp::num_significand_bits - num_significand_bits<double>() - SHIFT - 1;
  264. value.f <<= offset;
  265. value.e -= offset;
  266. return value;
  267. }
  268. inline bool operator==(fp x, fp y) { return x.f == y.f && x.e == y.e; }
  269. // Computes lhs * rhs / pow(2, 64) rounded to nearest with half-up tie breaking.
  270. FMT_CONSTEXPR inline uint64_t multiply(uint64_t lhs, uint64_t rhs) {
  271. #if FMT_USE_INT128
  272. auto product = static_cast<__uint128_t>(lhs) * rhs;
  273. auto f = static_cast<uint64_t>(product >> 64);
  274. return (static_cast<uint64_t>(product) & (1ULL << 63)) != 0 ? f + 1 : f;
  275. #else
  276. // Multiply 32-bit parts of significands.
  277. uint64_t mask = (1ULL << 32) - 1;
  278. uint64_t a = lhs >> 32, b = lhs & mask;
  279. uint64_t c = rhs >> 32, d = rhs & mask;
  280. uint64_t ac = a * c, bc = b * c, ad = a * d, bd = b * d;
  281. // Compute mid 64-bit of result and round.
  282. uint64_t mid = (bd >> 32) + (ad & mask) + (bc & mask) + (1U << 31);
  283. return ac + (ad >> 32) + (bc >> 32) + (mid >> 32);
  284. #endif
  285. }
  286. FMT_CONSTEXPR inline fp operator*(fp x, fp y) {
  287. return {multiply(x.f, y.f), x.e + y.e + 64};
  288. }
  289. // Returns a cached power of 10 `c_k = c_k.f * pow(2, c_k.e)` such that its
  290. // (binary) exponent satisfies `min_exponent <= c_k.e <= min_exponent + 28`.
  291. FMT_CONSTEXPR inline fp get_cached_power(int min_exponent,
  292. int& pow10_exponent) {
  293. const int shift = 32;
  294. const auto significand = static_cast<int64_t>(log10_2_significand);
  295. int index = static_cast<int>(
  296. ((min_exponent + fp::num_significand_bits - 1) * (significand >> shift) +
  297. ((int64_t(1) << shift) - 1)) // ceil
  298. >> 32 // arithmetic shift
  299. );
  300. // Decimal exponent of the first (smallest) cached power of 10.
  301. const int first_dec_exp = -348;
  302. // Difference between 2 consecutive decimal exponents in cached powers of 10.
  303. const int dec_exp_step = 8;
  304. index = (index - first_dec_exp - 1) / dec_exp_step + 1;
  305. pow10_exponent = first_dec_exp + index * dec_exp_step;
  306. return {impl_data::pow10_significands[index],
  307. impl_data::pow10_exponents[index]};
  308. }
  309. // A simple accumulator to hold the sums of terms in bigint::square if uint128_t
  310. // is not available.
  311. struct accumulator {
  312. uint64_t lower;
  313. uint64_t upper;
  314. constexpr accumulator() : lower(0), upper(0) {}
  315. constexpr explicit operator uint32_t() const {
  316. return static_cast<uint32_t>(lower);
  317. }
  318. FMT_CONSTEXPR void operator+=(uint64_t n) {
  319. lower += n;
  320. if (lower < n) ++upper;
  321. }
  322. FMT_CONSTEXPR void operator>>=(int shift) {
  323. FMT_ASSERT(shift == 32, "");
  324. (void)shift;
  325. lower = (upper << 32) | (lower >> 32);
  326. upper >>= 32;
  327. }
  328. };
  329. class bigint {
  330. private:
  331. // A bigint is stored as an array of bigits (big digits), with bigit at index
  332. // 0 being the least significant one.
  333. using bigit = uint32_t;
  334. using double_bigit = uint64_t;
  335. enum { bigits_capacity = 32 };
  336. basic_memory_buffer<bigit, bigits_capacity> bigits_;
  337. int exp_;
  338. FMT_CONSTEXPR20 bigit operator[](int index) const {
  339. return bigits_[to_unsigned(index)];
  340. }
  341. FMT_CONSTEXPR20 bigit& operator[](int index) {
  342. return bigits_[to_unsigned(index)];
  343. }
  344. static FMT_CONSTEXPR_DECL const int bigit_bits = bits<bigit>::value;
  345. friend struct formatter<bigint>;
  346. FMT_CONSTEXPR20 void subtract_bigits(int index, bigit other, bigit& borrow) {
  347. auto result = static_cast<double_bigit>((*this)[index]) - other - borrow;
  348. (*this)[index] = static_cast<bigit>(result);
  349. borrow = static_cast<bigit>(result >> (bigit_bits * 2 - 1));
  350. }
  351. FMT_CONSTEXPR20 void remove_leading_zeros() {
  352. int num_bigits = static_cast<int>(bigits_.size()) - 1;
  353. while (num_bigits > 0 && (*this)[num_bigits] == 0) --num_bigits;
  354. bigits_.resize(to_unsigned(num_bigits + 1));
  355. }
  356. // Computes *this -= other assuming aligned bigints and *this >= other.
  357. FMT_CONSTEXPR20 void subtract_aligned(const bigint& other) {
  358. FMT_ASSERT(other.exp_ >= exp_, "unaligned bigints");
  359. FMT_ASSERT(compare(*this, other) >= 0, "");
  360. bigit borrow = 0;
  361. int i = other.exp_ - exp_;
  362. for (size_t j = 0, n = other.bigits_.size(); j != n; ++i, ++j)
  363. subtract_bigits(i, other.bigits_[j], borrow);
  364. while (borrow > 0) subtract_bigits(i, 0, borrow);
  365. remove_leading_zeros();
  366. }
  367. FMT_CONSTEXPR20 void multiply(uint32_t value) {
  368. const double_bigit wide_value = value;
  369. bigit carry = 0;
  370. for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
  371. double_bigit result = bigits_[i] * wide_value + carry;
  372. bigits_[i] = static_cast<bigit>(result);
  373. carry = static_cast<bigit>(result >> bigit_bits);
  374. }
  375. if (carry != 0) bigits_.push_back(carry);
  376. }
  377. FMT_CONSTEXPR20 void multiply(uint64_t value) {
  378. const bigit mask = ~bigit(0);
  379. const double_bigit lower = value & mask;
  380. const double_bigit upper = value >> bigit_bits;
  381. double_bigit carry = 0;
  382. for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
  383. double_bigit result = bigits_[i] * lower + (carry & mask);
  384. carry =
  385. bigits_[i] * upper + (result >> bigit_bits) + (carry >> bigit_bits);
  386. bigits_[i] = static_cast<bigit>(result);
  387. }
  388. while (carry != 0) {
  389. bigits_.push_back(carry & mask);
  390. carry >>= bigit_bits;
  391. }
  392. }
  393. public:
  394. FMT_CONSTEXPR20 bigint() : exp_(0) {}
  395. explicit bigint(uint64_t n) { assign(n); }
  396. FMT_CONSTEXPR20 ~bigint() {
  397. FMT_ASSERT(bigits_.capacity() <= bigits_capacity, "");
  398. }
  399. bigint(const bigint&) = delete;
  400. void operator=(const bigint&) = delete;
  401. FMT_CONSTEXPR20 void assign(const bigint& other) {
  402. auto size = other.bigits_.size();
  403. bigits_.resize(size);
  404. auto data = other.bigits_.data();
  405. std::copy(data, data + size, make_checked(bigits_.data(), size));
  406. exp_ = other.exp_;
  407. }
  408. FMT_CONSTEXPR20 void assign(uint64_t n) {
  409. size_t num_bigits = 0;
  410. do {
  411. bigits_[num_bigits++] = n & ~bigit(0);
  412. n >>= bigit_bits;
  413. } while (n != 0);
  414. bigits_.resize(num_bigits);
  415. exp_ = 0;
  416. }
  417. FMT_CONSTEXPR20 int num_bigits() const {
  418. return static_cast<int>(bigits_.size()) + exp_;
  419. }
  420. FMT_NOINLINE FMT_CONSTEXPR20 bigint& operator<<=(int shift) {
  421. FMT_ASSERT(shift >= 0, "");
  422. exp_ += shift / bigit_bits;
  423. shift %= bigit_bits;
  424. if (shift == 0) return *this;
  425. bigit carry = 0;
  426. for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
  427. bigit c = bigits_[i] >> (bigit_bits - shift);
  428. bigits_[i] = (bigits_[i] << shift) + carry;
  429. carry = c;
  430. }
  431. if (carry != 0) bigits_.push_back(carry);
  432. return *this;
  433. }
  434. template <typename Int> FMT_CONSTEXPR20 bigint& operator*=(Int value) {
  435. FMT_ASSERT(value > 0, "");
  436. multiply(uint32_or_64_or_128_t<Int>(value));
  437. return *this;
  438. }
  439. friend FMT_CONSTEXPR20 int compare(const bigint& lhs, const bigint& rhs) {
  440. int num_lhs_bigits = lhs.num_bigits(), num_rhs_bigits = rhs.num_bigits();
  441. if (num_lhs_bigits != num_rhs_bigits)
  442. return num_lhs_bigits > num_rhs_bigits ? 1 : -1;
  443. int i = static_cast<int>(lhs.bigits_.size()) - 1;
  444. int j = static_cast<int>(rhs.bigits_.size()) - 1;
  445. int end = i - j;
  446. if (end < 0) end = 0;
  447. for (; i >= end; --i, --j) {
  448. bigit lhs_bigit = lhs[i], rhs_bigit = rhs[j];
  449. if (lhs_bigit != rhs_bigit) return lhs_bigit > rhs_bigit ? 1 : -1;
  450. }
  451. if (i != j) return i > j ? 1 : -1;
  452. return 0;
  453. }
  454. // Returns compare(lhs1 + lhs2, rhs).
  455. friend FMT_CONSTEXPR20 int add_compare(const bigint& lhs1, const bigint& lhs2,
  456. const bigint& rhs) {
  457. int max_lhs_bigits = (std::max)(lhs1.num_bigits(), lhs2.num_bigits());
  458. int num_rhs_bigits = rhs.num_bigits();
  459. if (max_lhs_bigits + 1 < num_rhs_bigits) return -1;
  460. if (max_lhs_bigits > num_rhs_bigits) return 1;
  461. auto get_bigit = [](const bigint& n, int i) -> bigit {
  462. return i >= n.exp_ && i < n.num_bigits() ? n[i - n.exp_] : 0;
  463. };
  464. double_bigit borrow = 0;
  465. int min_exp = (std::min)((std::min)(lhs1.exp_, lhs2.exp_), rhs.exp_);
  466. for (int i = num_rhs_bigits - 1; i >= min_exp; --i) {
  467. double_bigit sum =
  468. static_cast<double_bigit>(get_bigit(lhs1, i)) + get_bigit(lhs2, i);
  469. bigit rhs_bigit = get_bigit(rhs, i);
  470. if (sum > rhs_bigit + borrow) return 1;
  471. borrow = rhs_bigit + borrow - sum;
  472. if (borrow > 1) return -1;
  473. borrow <<= bigit_bits;
  474. }
  475. return borrow != 0 ? -1 : 0;
  476. }
  477. // Assigns pow(10, exp) to this bigint.
  478. FMT_CONSTEXPR20 void assign_pow10(int exp) {
  479. FMT_ASSERT(exp >= 0, "");
  480. if (exp == 0) return assign(1);
  481. // Find the top bit.
  482. int bitmask = 1;
  483. while (exp >= bitmask) bitmask <<= 1;
  484. bitmask >>= 1;
  485. // pow(10, exp) = pow(5, exp) * pow(2, exp). First compute pow(5, exp) by
  486. // repeated squaring and multiplication.
  487. assign(5);
  488. bitmask >>= 1;
  489. while (bitmask != 0) {
  490. square();
  491. if ((exp & bitmask) != 0) *this *= 5;
  492. bitmask >>= 1;
  493. }
  494. *this <<= exp; // Multiply by pow(2, exp) by shifting.
  495. }
  496. FMT_CONSTEXPR20 void square() {
  497. int num_bigits = static_cast<int>(bigits_.size());
  498. int num_result_bigits = 2 * num_bigits;
  499. basic_memory_buffer<bigit, bigits_capacity> n(std::move(bigits_));
  500. bigits_.resize(to_unsigned(num_result_bigits));
  501. using accumulator_t = conditional_t<FMT_USE_INT128, uint128_t, accumulator>;
  502. auto sum = accumulator_t();
  503. for (int bigit_index = 0; bigit_index < num_bigits; ++bigit_index) {
  504. // Compute bigit at position bigit_index of the result by adding
  505. // cross-product terms n[i] * n[j] such that i + j == bigit_index.
  506. for (int i = 0, j = bigit_index; j >= 0; ++i, --j) {
  507. // Most terms are multiplied twice which can be optimized in the future.
  508. sum += static_cast<double_bigit>(n[i]) * n[j];
  509. }
  510. (*this)[bigit_index] = static_cast<bigit>(sum);
  511. sum >>= bits<bigit>::value; // Compute the carry.
  512. }
  513. // Do the same for the top half.
  514. for (int bigit_index = num_bigits; bigit_index < num_result_bigits;
  515. ++bigit_index) {
  516. for (int j = num_bigits - 1, i = bigit_index - j; i < num_bigits;)
  517. sum += static_cast<double_bigit>(n[i++]) * n[j--];
  518. (*this)[bigit_index] = static_cast<bigit>(sum);
  519. sum >>= bits<bigit>::value;
  520. }
  521. remove_leading_zeros();
  522. exp_ *= 2;
  523. }
  524. // If this bigint has a bigger exponent than other, adds trailing zero to make
  525. // exponents equal. This simplifies some operations such as subtraction.
  526. FMT_CONSTEXPR20 void align(const bigint& other) {
  527. int exp_difference = exp_ - other.exp_;
  528. if (exp_difference <= 0) return;
  529. int num_bigits = static_cast<int>(bigits_.size());
  530. bigits_.resize(to_unsigned(num_bigits + exp_difference));
  531. for (int i = num_bigits - 1, j = i + exp_difference; i >= 0; --i, --j)
  532. bigits_[j] = bigits_[i];
  533. std::uninitialized_fill_n(bigits_.data(), exp_difference, 0);
  534. exp_ -= exp_difference;
  535. }
  536. // Divides this bignum by divisor, assigning the remainder to this and
  537. // returning the quotient.
  538. FMT_CONSTEXPR20 int divmod_assign(const bigint& divisor) {
  539. FMT_ASSERT(this != &divisor, "");
  540. if (compare(*this, divisor) < 0) return 0;
  541. FMT_ASSERT(divisor.bigits_[divisor.bigits_.size() - 1u] != 0, "");
  542. align(divisor);
  543. int quotient = 0;
  544. do {
  545. subtract_aligned(divisor);
  546. ++quotient;
  547. } while (compare(*this, divisor) >= 0);
  548. return quotient;
  549. }
  550. };
  551. enum class round_direction { unknown, up, down };
  552. // Given the divisor (normally a power of 10), the remainder = v % divisor for
  553. // some number v and the error, returns whether v should be rounded up, down, or
  554. // whether the rounding direction can't be determined due to error.
  555. // error should be less than divisor / 2.
  556. FMT_CONSTEXPR inline round_direction get_round_direction(uint64_t divisor,
  557. uint64_t remainder,
  558. uint64_t error) {
  559. FMT_ASSERT(remainder < divisor, ""); // divisor - remainder won't overflow.
  560. FMT_ASSERT(error < divisor, ""); // divisor - error won't overflow.
  561. FMT_ASSERT(error < divisor - error, ""); // error * 2 won't overflow.
  562. // Round down if (remainder + error) * 2 <= divisor.
  563. if (remainder <= divisor - remainder && error * 2 <= divisor - remainder * 2)
  564. return round_direction::down;
  565. // Round up if (remainder - error) * 2 >= divisor.
  566. if (remainder >= error &&
  567. remainder - error >= divisor - (remainder - error)) {
  568. return round_direction::up;
  569. }
  570. return round_direction::unknown;
  571. }
  572. namespace digits {
  573. enum result {
  574. more, // Generate more digits.
  575. done, // Done generating digits.
  576. error // Digit generation cancelled due to an error.
  577. };
  578. }
  579. struct gen_digits_handler {
  580. char* buf;
  581. int size;
  582. int precision;
  583. int exp10;
  584. bool fixed;
  585. FMT_CONSTEXPR digits::result on_digit(char digit, uint64_t divisor,
  586. uint64_t remainder, uint64_t error,
  587. bool integral) {
  588. FMT_ASSERT(remainder < divisor, "");
  589. buf[size++] = digit;
  590. if (!integral && error >= remainder) return digits::error;
  591. if (size < precision) return digits::more;
  592. if (!integral) {
  593. // Check if error * 2 < divisor with overflow prevention.
  594. // The check is not needed for the integral part because error = 1
  595. // and divisor > (1 << 32) there.
  596. if (error >= divisor || error >= divisor - error) return digits::error;
  597. } else {
  598. FMT_ASSERT(error == 1 && divisor > 2, "");
  599. }
  600. auto dir = get_round_direction(divisor, remainder, error);
  601. if (dir != round_direction::up)
  602. return dir == round_direction::down ? digits::done : digits::error;
  603. ++buf[size - 1];
  604. for (int i = size - 1; i > 0 && buf[i] > '9'; --i) {
  605. buf[i] = '0';
  606. ++buf[i - 1];
  607. }
  608. if (buf[0] > '9') {
  609. buf[0] = '1';
  610. if (fixed)
  611. buf[size++] = '0';
  612. else
  613. ++exp10;
  614. }
  615. return digits::done;
  616. }
  617. };
  618. // Generates output using the Grisu digit-gen algorithm.
  619. // error: the size of the region (lower, upper) outside of which numbers
  620. // definitely do not round to value (Delta in Grisu3).
  621. FMT_INLINE FMT_CONSTEXPR20 digits::result grisu_gen_digits(
  622. fp value, uint64_t error, int& exp, gen_digits_handler& handler) {
  623. const fp one(1ULL << -value.e, value.e);
  624. // The integral part of scaled value (p1 in Grisu) = value / one. It cannot be
  625. // zero because it contains a product of two 64-bit numbers with MSB set (due
  626. // to normalization) - 1, shifted right by at most 60 bits.
  627. auto integral = static_cast<uint32_t>(value.f >> -one.e);
  628. FMT_ASSERT(integral != 0, "");
  629. FMT_ASSERT(integral == value.f >> -one.e, "");
  630. // The fractional part of scaled value (p2 in Grisu) c = value % one.
  631. uint64_t fractional = value.f & (one.f - 1);
  632. exp = count_digits(integral); // kappa in Grisu.
  633. // Non-fixed formats require at least one digit and no precision adjustment.
  634. if (handler.fixed) {
  635. // Adjust fixed precision by exponent because it is relative to decimal
  636. // point.
  637. int precision_offset = exp + handler.exp10;
  638. if (precision_offset > 0 &&
  639. handler.precision > max_value<int>() - precision_offset) {
  640. FMT_THROW(format_error("number is too big"));
  641. }
  642. handler.precision += precision_offset;
  643. // Check if precision is satisfied just by leading zeros, e.g.
  644. // format("{:.2f}", 0.001) gives "0.00" without generating any digits.
  645. if (handler.precision <= 0) {
  646. if (handler.precision < 0) return digits::done;
  647. // Divide by 10 to prevent overflow.
  648. uint64_t divisor = impl_data::power_of_10_64[exp - 1] << -one.e;
  649. auto dir = get_round_direction(divisor, value.f / 10, error * 10);
  650. if (dir == round_direction::unknown) return digits::error;
  651. handler.buf[handler.size++] = dir == round_direction::up ? '1' : '0';
  652. return digits::done;
  653. }
  654. }
  655. // Generate digits for the integral part. This can produce up to 10 digits.
  656. do {
  657. uint32_t digit = 0;
  658. auto divmod_integral = [&](uint32_t divisor) {
  659. digit = integral / divisor;
  660. integral %= divisor;
  661. };
  662. // This optimization by Milo Yip reduces the number of integer divisions by
  663. // one per iteration.
  664. switch (exp) {
  665. case 10:
  666. divmod_integral(1000000000);
  667. break;
  668. case 9:
  669. divmod_integral(100000000);
  670. break;
  671. case 8:
  672. divmod_integral(10000000);
  673. break;
  674. case 7:
  675. divmod_integral(1000000);
  676. break;
  677. case 6:
  678. divmod_integral(100000);
  679. break;
  680. case 5:
  681. divmod_integral(10000);
  682. break;
  683. case 4:
  684. divmod_integral(1000);
  685. break;
  686. case 3:
  687. divmod_integral(100);
  688. break;
  689. case 2:
  690. divmod_integral(10);
  691. break;
  692. case 1:
  693. digit = integral;
  694. integral = 0;
  695. break;
  696. default:
  697. FMT_ASSERT(false, "invalid number of digits");
  698. }
  699. --exp;
  700. auto remainder = (static_cast<uint64_t>(integral) << -one.e) + fractional;
  701. auto result = handler.on_digit(static_cast<char>('0' + digit),
  702. impl_data::power_of_10_64[exp] << -one.e,
  703. remainder, error, true);
  704. if (result != digits::more) return result;
  705. } while (exp > 0);
  706. // Generate digits for the fractional part.
  707. for (;;) {
  708. fractional *= 10;
  709. error *= 10;
  710. char digit = static_cast<char>('0' + (fractional >> -one.e));
  711. fractional &= one.f - 1;
  712. --exp;
  713. auto result = handler.on_digit(digit, one.f, fractional, error, false);
  714. if (result != digits::more) return result;
  715. }
  716. }
  717. // A 128-bit integer type used internally,
  718. struct uint128_wrapper {
  719. uint128_wrapper() = default;
  720. #if FMT_USE_INT128
  721. uint128_t internal_;
  722. constexpr uint128_wrapper(uint64_t high, uint64_t low) FMT_NOEXCEPT
  723. : internal_{static_cast<uint128_t>(low) |
  724. (static_cast<uint128_t>(high) << 64)} {}
  725. constexpr uint128_wrapper(uint128_t u) : internal_{u} {}
  726. constexpr uint64_t high() const FMT_NOEXCEPT {
  727. return uint64_t(internal_ >> 64);
  728. }
  729. constexpr uint64_t low() const FMT_NOEXCEPT { return uint64_t(internal_); }
  730. uint128_wrapper& operator+=(uint64_t n) FMT_NOEXCEPT {
  731. internal_ += n;
  732. return *this;
  733. }
  734. #else
  735. uint64_t high_;
  736. uint64_t low_;
  737. constexpr uint128_wrapper(uint64_t high, uint64_t low) FMT_NOEXCEPT
  738. : high_{high},
  739. low_{low} {}
  740. constexpr uint64_t high() const FMT_NOEXCEPT { return high_; }
  741. constexpr uint64_t low() const FMT_NOEXCEPT { return low_; }
  742. uint128_wrapper& operator+=(uint64_t n) FMT_NOEXCEPT {
  743. # if defined(_MSC_VER) && defined(_M_X64)
  744. unsigned char carry = _addcarry_u64(0, low_, n, &low_);
  745. _addcarry_u64(carry, high_, 0, &high_);
  746. return *this;
  747. # else
  748. uint64_t sum = low_ + n;
  749. high_ += (sum < low_ ? 1 : 0);
  750. low_ = sum;
  751. return *this;
  752. # endif
  753. }
  754. #endif
  755. };
  756. // Implementation of Dragonbox algorithm: https://github.com/jk-jeon/dragonbox.
  757. namespace dragonbox {
  758. // Computes 128-bit result of multiplication of two 64-bit unsigned integers.
  759. inline uint128_wrapper umul128(uint64_t x, uint64_t y) FMT_NOEXCEPT {
  760. #if FMT_USE_INT128
  761. return static_cast<uint128_t>(x) * static_cast<uint128_t>(y);
  762. #elif defined(_MSC_VER) && defined(_M_X64)
  763. uint128_wrapper result;
  764. result.low_ = _umul128(x, y, &result.high_);
  765. return result;
  766. #else
  767. const uint64_t mask = (uint64_t(1) << 32) - uint64_t(1);
  768. uint64_t a = x >> 32;
  769. uint64_t b = x & mask;
  770. uint64_t c = y >> 32;
  771. uint64_t d = y & mask;
  772. uint64_t ac = a * c;
  773. uint64_t bc = b * c;
  774. uint64_t ad = a * d;
  775. uint64_t bd = b * d;
  776. uint64_t intermediate = (bd >> 32) + (ad & mask) + (bc & mask);
  777. return {ac + (intermediate >> 32) + (ad >> 32) + (bc >> 32),
  778. (intermediate << 32) + (bd & mask)};
  779. #endif
  780. }
  781. // Computes upper 64 bits of multiplication of two 64-bit unsigned integers.
  782. inline uint64_t umul128_upper64(uint64_t x, uint64_t y) FMT_NOEXCEPT {
  783. #if FMT_USE_INT128
  784. auto p = static_cast<uint128_t>(x) * static_cast<uint128_t>(y);
  785. return static_cast<uint64_t>(p >> 64);
  786. #elif defined(_MSC_VER) && defined(_M_X64)
  787. return __umulh(x, y);
  788. #else
  789. return umul128(x, y).high();
  790. #endif
  791. }
  792. // Computes upper 64 bits of multiplication of a 64-bit unsigned integer and a
  793. // 128-bit unsigned integer.
  794. inline uint64_t umul192_upper64(uint64_t x, uint128_wrapper y) FMT_NOEXCEPT {
  795. uint128_wrapper g0 = umul128(x, y.high());
  796. g0 += umul128_upper64(x, y.low());
  797. return g0.high();
  798. }
  799. // Computes upper 32 bits of multiplication of a 32-bit unsigned integer and a
  800. // 64-bit unsigned integer.
  801. inline uint32_t umul96_upper32(uint32_t x, uint64_t y) FMT_NOEXCEPT {
  802. return static_cast<uint32_t>(umul128_upper64(x, y));
  803. }
  804. // Computes middle 64 bits of multiplication of a 64-bit unsigned integer and a
  805. // 128-bit unsigned integer.
  806. inline uint64_t umul192_middle64(uint64_t x, uint128_wrapper y) FMT_NOEXCEPT {
  807. uint64_t g01 = x * y.high();
  808. uint64_t g10 = umul128_upper64(x, y.low());
  809. return g01 + g10;
  810. }
  811. // Computes lower 64 bits of multiplication of a 32-bit unsigned integer and a
  812. // 64-bit unsigned integer.
  813. inline uint64_t umul96_lower64(uint32_t x, uint64_t y) FMT_NOEXCEPT {
  814. return x * y;
  815. }
  816. // Computes floor(log10(pow(2, e))) for e in [-1700, 1700] using the method from
  817. // https://fmt.dev/papers/Grisu-Exact.pdf#page=5, section 3.4.
  818. inline int floor_log10_pow2(int e) FMT_NOEXCEPT {
  819. FMT_ASSERT(e <= 1700 && e >= -1700, "too large exponent");
  820. const int shift = 22;
  821. return (e * static_cast<int>(log10_2_significand >> (64 - shift))) >> shift;
  822. }
  823. // Various fast log computations.
  824. inline int floor_log2_pow10(int e) FMT_NOEXCEPT {
  825. FMT_ASSERT(e <= 1233 && e >= -1233, "too large exponent");
  826. const uint64_t log2_10_integer_part = 3;
  827. const uint64_t log2_10_fractional_digits = 0x5269e12f346e2bf9;
  828. const int shift_amount = 19;
  829. return (e * static_cast<int>(
  830. (log2_10_integer_part << shift_amount) |
  831. (log2_10_fractional_digits >> (64 - shift_amount)))) >>
  832. shift_amount;
  833. }
  834. inline int floor_log10_pow2_minus_log10_4_over_3(int e) FMT_NOEXCEPT {
  835. FMT_ASSERT(e <= 1700 && e >= -1700, "too large exponent");
  836. const uint64_t log10_4_over_3_fractional_digits = 0x1ffbfc2bbc780375;
  837. const int shift_amount = 22;
  838. return (e * static_cast<int>(log10_2_significand >> (64 - shift_amount)) -
  839. static_cast<int>(log10_4_over_3_fractional_digits >>
  840. (64 - shift_amount))) >>
  841. shift_amount;
  842. }
  843. // Returns true iff x is divisible by pow(2, exp).
  844. inline bool divisible_by_power_of_2(uint32_t x, int exp) FMT_NOEXCEPT {
  845. FMT_ASSERT(exp >= 1, "");
  846. FMT_ASSERT(x != 0, "");
  847. #ifdef FMT_BUILTIN_CTZ
  848. return FMT_BUILTIN_CTZ(x) >= exp;
  849. #else
  850. return exp < num_bits<uint32_t>() && x == ((x >> exp) << exp);
  851. #endif
  852. }
  853. inline bool divisible_by_power_of_2(uint64_t x, int exp) FMT_NOEXCEPT {
  854. FMT_ASSERT(exp >= 1, "");
  855. FMT_ASSERT(x != 0, "");
  856. #ifdef FMT_BUILTIN_CTZLL
  857. return FMT_BUILTIN_CTZLL(x) >= exp;
  858. #else
  859. return exp < num_bits<uint64_t>() && x == ((x >> exp) << exp);
  860. #endif
  861. }
  862. // Table entry type for divisibility test.
  863. template <typename T> struct divtest_table_entry {
  864. T mod_inv;
  865. T max_quotient;
  866. };
  867. // Returns true iff x is divisible by pow(5, exp).
  868. inline bool divisible_by_power_of_5(uint32_t x, int exp) FMT_NOEXCEPT {
  869. FMT_ASSERT(exp <= 10, "too large exponent");
  870. static constexpr const divtest_table_entry<uint32_t> divtest_table[] = {
  871. {0x00000001, 0xffffffff}, {0xcccccccd, 0x33333333},
  872. {0xc28f5c29, 0x0a3d70a3}, {0x26e978d5, 0x020c49ba},
  873. {0x3afb7e91, 0x0068db8b}, {0x0bcbe61d, 0x0014f8b5},
  874. {0x68c26139, 0x000431bd}, {0xae8d46a5, 0x0000d6bf},
  875. {0x22e90e21, 0x00002af3}, {0x3a2e9c6d, 0x00000897},
  876. {0x3ed61f49, 0x000001b7}};
  877. return x * divtest_table[exp].mod_inv <= divtest_table[exp].max_quotient;
  878. }
  879. inline bool divisible_by_power_of_5(uint64_t x, int exp) FMT_NOEXCEPT {
  880. FMT_ASSERT(exp <= 23, "too large exponent");
  881. static constexpr const divtest_table_entry<uint64_t> divtest_table[] = {
  882. {0x0000000000000001, 0xffffffffffffffff},
  883. {0xcccccccccccccccd, 0x3333333333333333},
  884. {0x8f5c28f5c28f5c29, 0x0a3d70a3d70a3d70},
  885. {0x1cac083126e978d5, 0x020c49ba5e353f7c},
  886. {0xd288ce703afb7e91, 0x0068db8bac710cb2},
  887. {0x5d4e8fb00bcbe61d, 0x0014f8b588e368f0},
  888. {0x790fb65668c26139, 0x000431bde82d7b63},
  889. {0xe5032477ae8d46a5, 0x0000d6bf94d5e57a},
  890. {0xc767074b22e90e21, 0x00002af31dc46118},
  891. {0x8e47ce423a2e9c6d, 0x0000089705f4136b},
  892. {0x4fa7f60d3ed61f49, 0x000001b7cdfd9d7b},
  893. {0x0fee64690c913975, 0x00000057f5ff85e5},
  894. {0x3662e0e1cf503eb1, 0x000000119799812d},
  895. {0xa47a2cf9f6433fbd, 0x0000000384b84d09},
  896. {0x54186f653140a659, 0x00000000b424dc35},
  897. {0x7738164770402145, 0x0000000024075f3d},
  898. {0xe4a4d1417cd9a041, 0x000000000734aca5},
  899. {0xc75429d9e5c5200d, 0x000000000170ef54},
  900. {0xc1773b91fac10669, 0x000000000049c977},
  901. {0x26b172506559ce15, 0x00000000000ec1e4},
  902. {0xd489e3a9addec2d1, 0x000000000002f394},
  903. {0x90e860bb892c8d5d, 0x000000000000971d},
  904. {0x502e79bf1b6f4f79, 0x0000000000001e39},
  905. {0xdcd618596be30fe5, 0x000000000000060b}};
  906. return x * divtest_table[exp].mod_inv <= divtest_table[exp].max_quotient;
  907. }
  908. // Replaces n by floor(n / pow(5, N)) returning true if and only if n is
  909. // divisible by pow(5, N).
  910. // Precondition: n <= 2 * pow(5, N + 1).
  911. template <int N>
  912. bool check_divisibility_and_divide_by_pow5(uint32_t& n) FMT_NOEXCEPT {
  913. static constexpr struct {
  914. uint32_t magic_number;
  915. int bits_for_comparison;
  916. uint32_t threshold;
  917. int shift_amount;
  918. } infos[] = {{0xcccd, 16, 0x3333, 18}, {0xa429, 8, 0x0a, 20}};
  919. constexpr auto info = infos[N - 1];
  920. n *= info.magic_number;
  921. const uint32_t comparison_mask = (1u << info.bits_for_comparison) - 1;
  922. bool result = (n & comparison_mask) <= info.threshold;
  923. n >>= info.shift_amount;
  924. return result;
  925. }
  926. // Computes floor(n / pow(10, N)) for small n and N.
  927. // Precondition: n <= pow(10, N + 1).
  928. template <int N> uint32_t small_division_by_pow10(uint32_t n) FMT_NOEXCEPT {
  929. static constexpr struct {
  930. uint32_t magic_number;
  931. int shift_amount;
  932. uint32_t divisor_times_10;
  933. } infos[] = {{0xcccd, 19, 100}, {0xa3d8, 22, 1000}};
  934. constexpr auto info = infos[N - 1];
  935. FMT_ASSERT(n <= info.divisor_times_10, "n is too large");
  936. return n * info.magic_number >> info.shift_amount;
  937. }
  938. // Computes floor(n / 10^(kappa + 1)) (float)
  939. inline uint32_t divide_by_10_to_kappa_plus_1(uint32_t n) FMT_NOEXCEPT {
  940. return n / float_info<float>::big_divisor;
  941. }
  942. // Computes floor(n / 10^(kappa + 1)) (double)
  943. inline uint64_t divide_by_10_to_kappa_plus_1(uint64_t n) FMT_NOEXCEPT {
  944. return umul128_upper64(n, 0x83126e978d4fdf3c) >> 9;
  945. }
  946. // Various subroutines using pow10 cache
  947. template <class T> struct cache_accessor;
  948. template <> struct cache_accessor<float> {
  949. using carrier_uint = float_info<float>::carrier_uint;
  950. using cache_entry_type = uint64_t;
  951. static uint64_t get_cached_power(int k) FMT_NOEXCEPT {
  952. FMT_ASSERT(k >= float_info<float>::min_k && k <= float_info<float>::max_k,
  953. "k is out of range");
  954. static constexpr const uint64_t pow10_significands[] = {
  955. 0x81ceb32c4b43fcf5, 0xa2425ff75e14fc32, 0xcad2f7f5359a3b3f,
  956. 0xfd87b5f28300ca0e, 0x9e74d1b791e07e49, 0xc612062576589ddb,
  957. 0xf79687aed3eec552, 0x9abe14cd44753b53, 0xc16d9a0095928a28,
  958. 0xf1c90080baf72cb2, 0x971da05074da7bef, 0xbce5086492111aeb,
  959. 0xec1e4a7db69561a6, 0x9392ee8e921d5d08, 0xb877aa3236a4b44a,
  960. 0xe69594bec44de15c, 0x901d7cf73ab0acda, 0xb424dc35095cd810,
  961. 0xe12e13424bb40e14, 0x8cbccc096f5088cc, 0xafebff0bcb24aaff,
  962. 0xdbe6fecebdedd5bf, 0x89705f4136b4a598, 0xabcc77118461cefd,
  963. 0xd6bf94d5e57a42bd, 0x8637bd05af6c69b6, 0xa7c5ac471b478424,
  964. 0xd1b71758e219652c, 0x83126e978d4fdf3c, 0xa3d70a3d70a3d70b,
  965. 0xcccccccccccccccd, 0x8000000000000000, 0xa000000000000000,
  966. 0xc800000000000000, 0xfa00000000000000, 0x9c40000000000000,
  967. 0xc350000000000000, 0xf424000000000000, 0x9896800000000000,
  968. 0xbebc200000000000, 0xee6b280000000000, 0x9502f90000000000,
  969. 0xba43b74000000000, 0xe8d4a51000000000, 0x9184e72a00000000,
  970. 0xb5e620f480000000, 0xe35fa931a0000000, 0x8e1bc9bf04000000,
  971. 0xb1a2bc2ec5000000, 0xde0b6b3a76400000, 0x8ac7230489e80000,
  972. 0xad78ebc5ac620000, 0xd8d726b7177a8000, 0x878678326eac9000,
  973. 0xa968163f0a57b400, 0xd3c21bcecceda100, 0x84595161401484a0,
  974. 0xa56fa5b99019a5c8, 0xcecb8f27f4200f3a, 0x813f3978f8940984,
  975. 0xa18f07d736b90be5, 0xc9f2c9cd04674ede, 0xfc6f7c4045812296,
  976. 0x9dc5ada82b70b59d, 0xc5371912364ce305, 0xf684df56c3e01bc6,
  977. 0x9a130b963a6c115c, 0xc097ce7bc90715b3, 0xf0bdc21abb48db20,
  978. 0x96769950b50d88f4, 0xbc143fa4e250eb31, 0xeb194f8e1ae525fd,
  979. 0x92efd1b8d0cf37be, 0xb7abc627050305ad, 0xe596b7b0c643c719,
  980. 0x8f7e32ce7bea5c6f, 0xb35dbf821ae4f38b, 0xe0352f62a19e306e};
  981. return pow10_significands[k - float_info<float>::min_k];
  982. }
  983. static carrier_uint compute_mul(carrier_uint u,
  984. const cache_entry_type& cache) FMT_NOEXCEPT {
  985. return umul96_upper32(u, cache);
  986. }
  987. static uint32_t compute_delta(const cache_entry_type& cache,
  988. int beta_minus_1) FMT_NOEXCEPT {
  989. return static_cast<uint32_t>(cache >> (64 - 1 - beta_minus_1));
  990. }
  991. static bool compute_mul_parity(carrier_uint two_f,
  992. const cache_entry_type& cache,
  993. int beta_minus_1) FMT_NOEXCEPT {
  994. FMT_ASSERT(beta_minus_1 >= 1, "");
  995. FMT_ASSERT(beta_minus_1 < 64, "");
  996. return ((umul96_lower64(two_f, cache) >> (64 - beta_minus_1)) & 1) != 0;
  997. }
  998. static carrier_uint compute_left_endpoint_for_shorter_interval_case(
  999. const cache_entry_type& cache, int beta_minus_1) FMT_NOEXCEPT {
  1000. return static_cast<carrier_uint>(
  1001. (cache - (cache >> (float_info<float>::significand_bits + 2))) >>
  1002. (64 - float_info<float>::significand_bits - 1 - beta_minus_1));
  1003. }
  1004. static carrier_uint compute_right_endpoint_for_shorter_interval_case(
  1005. const cache_entry_type& cache, int beta_minus_1) FMT_NOEXCEPT {
  1006. return static_cast<carrier_uint>(
  1007. (cache + (cache >> (float_info<float>::significand_bits + 1))) >>
  1008. (64 - float_info<float>::significand_bits - 1 - beta_minus_1));
  1009. }
  1010. static carrier_uint compute_round_up_for_shorter_interval_case(
  1011. const cache_entry_type& cache, int beta_minus_1) FMT_NOEXCEPT {
  1012. return (static_cast<carrier_uint>(
  1013. cache >>
  1014. (64 - float_info<float>::significand_bits - 2 - beta_minus_1)) +
  1015. 1) /
  1016. 2;
  1017. }
  1018. };
  1019. template <> struct cache_accessor<double> {
  1020. using carrier_uint = float_info<double>::carrier_uint;
  1021. using cache_entry_type = uint128_wrapper;
  1022. static uint128_wrapper get_cached_power(int k) FMT_NOEXCEPT {
  1023. FMT_ASSERT(k >= float_info<double>::min_k && k <= float_info<double>::max_k,
  1024. "k is out of range");
  1025. static constexpr const uint128_wrapper pow10_significands[] = {
  1026. #if FMT_USE_FULL_CACHE_DRAGONBOX
  1027. {0xff77b1fcbebcdc4f, 0x25e8e89c13bb0f7b},
  1028. {0x9faacf3df73609b1, 0x77b191618c54e9ad},
  1029. {0xc795830d75038c1d, 0xd59df5b9ef6a2418},
  1030. {0xf97ae3d0d2446f25, 0x4b0573286b44ad1e},
  1031. {0x9becce62836ac577, 0x4ee367f9430aec33},
  1032. {0xc2e801fb244576d5, 0x229c41f793cda740},
  1033. {0xf3a20279ed56d48a, 0x6b43527578c11110},
  1034. {0x9845418c345644d6, 0x830a13896b78aaaa},
  1035. {0xbe5691ef416bd60c, 0x23cc986bc656d554},
  1036. {0xedec366b11c6cb8f, 0x2cbfbe86b7ec8aa9},
  1037. {0x94b3a202eb1c3f39, 0x7bf7d71432f3d6aa},
  1038. {0xb9e08a83a5e34f07, 0xdaf5ccd93fb0cc54},
  1039. {0xe858ad248f5c22c9, 0xd1b3400f8f9cff69},
  1040. {0x91376c36d99995be, 0x23100809b9c21fa2},
  1041. {0xb58547448ffffb2d, 0xabd40a0c2832a78b},
  1042. {0xe2e69915b3fff9f9, 0x16c90c8f323f516d},
  1043. {0x8dd01fad907ffc3b, 0xae3da7d97f6792e4},
  1044. {0xb1442798f49ffb4a, 0x99cd11cfdf41779d},
  1045. {0xdd95317f31c7fa1d, 0x40405643d711d584},
  1046. {0x8a7d3eef7f1cfc52, 0x482835ea666b2573},
  1047. {0xad1c8eab5ee43b66, 0xda3243650005eed0},
  1048. {0xd863b256369d4a40, 0x90bed43e40076a83},
  1049. {0x873e4f75e2224e68, 0x5a7744a6e804a292},
  1050. {0xa90de3535aaae202, 0x711515d0a205cb37},
  1051. {0xd3515c2831559a83, 0x0d5a5b44ca873e04},
  1052. {0x8412d9991ed58091, 0xe858790afe9486c3},
  1053. {0xa5178fff668ae0b6, 0x626e974dbe39a873},
  1054. {0xce5d73ff402d98e3, 0xfb0a3d212dc81290},
  1055. {0x80fa687f881c7f8e, 0x7ce66634bc9d0b9a},
  1056. {0xa139029f6a239f72, 0x1c1fffc1ebc44e81},
  1057. {0xc987434744ac874e, 0xa327ffb266b56221},
  1058. {0xfbe9141915d7a922, 0x4bf1ff9f0062baa9},
  1059. {0x9d71ac8fada6c9b5, 0x6f773fc3603db4aa},
  1060. {0xc4ce17b399107c22, 0xcb550fb4384d21d4},
  1061. {0xf6019da07f549b2b, 0x7e2a53a146606a49},
  1062. {0x99c102844f94e0fb, 0x2eda7444cbfc426e},
  1063. {0xc0314325637a1939, 0xfa911155fefb5309},
  1064. {0xf03d93eebc589f88, 0x793555ab7eba27cb},
  1065. {0x96267c7535b763b5, 0x4bc1558b2f3458df},
  1066. {0xbbb01b9283253ca2, 0x9eb1aaedfb016f17},
  1067. {0xea9c227723ee8bcb, 0x465e15a979c1cadd},
  1068. {0x92a1958a7675175f, 0x0bfacd89ec191eca},
  1069. {0xb749faed14125d36, 0xcef980ec671f667c},
  1070. {0xe51c79a85916f484, 0x82b7e12780e7401b},
  1071. {0x8f31cc0937ae58d2, 0xd1b2ecb8b0908811},
  1072. {0xb2fe3f0b8599ef07, 0x861fa7e6dcb4aa16},
  1073. {0xdfbdcece67006ac9, 0x67a791e093e1d49b},
  1074. {0x8bd6a141006042bd, 0xe0c8bb2c5c6d24e1},
  1075. {0xaecc49914078536d, 0x58fae9f773886e19},
  1076. {0xda7f5bf590966848, 0xaf39a475506a899f},
  1077. {0x888f99797a5e012d, 0x6d8406c952429604},
  1078. {0xaab37fd7d8f58178, 0xc8e5087ba6d33b84},
  1079. {0xd5605fcdcf32e1d6, 0xfb1e4a9a90880a65},
  1080. {0x855c3be0a17fcd26, 0x5cf2eea09a550680},
  1081. {0xa6b34ad8c9dfc06f, 0xf42faa48c0ea481f},
  1082. {0xd0601d8efc57b08b, 0xf13b94daf124da27},
  1083. {0x823c12795db6ce57, 0x76c53d08d6b70859},
  1084. {0xa2cb1717b52481ed, 0x54768c4b0c64ca6f},
  1085. {0xcb7ddcdda26da268, 0xa9942f5dcf7dfd0a},
  1086. {0xfe5d54150b090b02, 0xd3f93b35435d7c4d},
  1087. {0x9efa548d26e5a6e1, 0xc47bc5014a1a6db0},
  1088. {0xc6b8e9b0709f109a, 0x359ab6419ca1091c},
  1089. {0xf867241c8cc6d4c0, 0xc30163d203c94b63},
  1090. {0x9b407691d7fc44f8, 0x79e0de63425dcf1e},
  1091. {0xc21094364dfb5636, 0x985915fc12f542e5},
  1092. {0xf294b943e17a2bc4, 0x3e6f5b7b17b2939e},
  1093. {0x979cf3ca6cec5b5a, 0xa705992ceecf9c43},
  1094. {0xbd8430bd08277231, 0x50c6ff782a838354},
  1095. {0xece53cec4a314ebd, 0xa4f8bf5635246429},
  1096. {0x940f4613ae5ed136, 0x871b7795e136be9a},
  1097. {0xb913179899f68584, 0x28e2557b59846e40},
  1098. {0xe757dd7ec07426e5, 0x331aeada2fe589d0},
  1099. {0x9096ea6f3848984f, 0x3ff0d2c85def7622},
  1100. {0xb4bca50b065abe63, 0x0fed077a756b53aa},
  1101. {0xe1ebce4dc7f16dfb, 0xd3e8495912c62895},
  1102. {0x8d3360f09cf6e4bd, 0x64712dd7abbbd95d},
  1103. {0xb080392cc4349dec, 0xbd8d794d96aacfb4},
  1104. {0xdca04777f541c567, 0xecf0d7a0fc5583a1},
  1105. {0x89e42caaf9491b60, 0xf41686c49db57245},
  1106. {0xac5d37d5b79b6239, 0x311c2875c522ced6},
  1107. {0xd77485cb25823ac7, 0x7d633293366b828c},
  1108. {0x86a8d39ef77164bc, 0xae5dff9c02033198},
  1109. {0xa8530886b54dbdeb, 0xd9f57f830283fdfd},
  1110. {0xd267caa862a12d66, 0xd072df63c324fd7c},
  1111. {0x8380dea93da4bc60, 0x4247cb9e59f71e6e},
  1112. {0xa46116538d0deb78, 0x52d9be85f074e609},
  1113. {0xcd795be870516656, 0x67902e276c921f8c},
  1114. {0x806bd9714632dff6, 0x00ba1cd8a3db53b7},
  1115. {0xa086cfcd97bf97f3, 0x80e8a40eccd228a5},
  1116. {0xc8a883c0fdaf7df0, 0x6122cd128006b2ce},
  1117. {0xfad2a4b13d1b5d6c, 0x796b805720085f82},
  1118. {0x9cc3a6eec6311a63, 0xcbe3303674053bb1},
  1119. {0xc3f490aa77bd60fc, 0xbedbfc4411068a9d},
  1120. {0xf4f1b4d515acb93b, 0xee92fb5515482d45},
  1121. {0x991711052d8bf3c5, 0x751bdd152d4d1c4b},
  1122. {0xbf5cd54678eef0b6, 0xd262d45a78a0635e},
  1123. {0xef340a98172aace4, 0x86fb897116c87c35},
  1124. {0x9580869f0e7aac0e, 0xd45d35e6ae3d4da1},
  1125. {0xbae0a846d2195712, 0x8974836059cca10a},
  1126. {0xe998d258869facd7, 0x2bd1a438703fc94c},
  1127. {0x91ff83775423cc06, 0x7b6306a34627ddd0},
  1128. {0xb67f6455292cbf08, 0x1a3bc84c17b1d543},
  1129. {0xe41f3d6a7377eeca, 0x20caba5f1d9e4a94},
  1130. {0x8e938662882af53e, 0x547eb47b7282ee9d},
  1131. {0xb23867fb2a35b28d, 0xe99e619a4f23aa44},
  1132. {0xdec681f9f4c31f31, 0x6405fa00e2ec94d5},
  1133. {0x8b3c113c38f9f37e, 0xde83bc408dd3dd05},
  1134. {0xae0b158b4738705e, 0x9624ab50b148d446},
  1135. {0xd98ddaee19068c76, 0x3badd624dd9b0958},
  1136. {0x87f8a8d4cfa417c9, 0xe54ca5d70a80e5d7},
  1137. {0xa9f6d30a038d1dbc, 0x5e9fcf4ccd211f4d},
  1138. {0xd47487cc8470652b, 0x7647c32000696720},
  1139. {0x84c8d4dfd2c63f3b, 0x29ecd9f40041e074},
  1140. {0xa5fb0a17c777cf09, 0xf468107100525891},
  1141. {0xcf79cc9db955c2cc, 0x7182148d4066eeb5},
  1142. {0x81ac1fe293d599bf, 0xc6f14cd848405531},
  1143. {0xa21727db38cb002f, 0xb8ada00e5a506a7d},
  1144. {0xca9cf1d206fdc03b, 0xa6d90811f0e4851d},
  1145. {0xfd442e4688bd304a, 0x908f4a166d1da664},
  1146. {0x9e4a9cec15763e2e, 0x9a598e4e043287ff},
  1147. {0xc5dd44271ad3cdba, 0x40eff1e1853f29fe},
  1148. {0xf7549530e188c128, 0xd12bee59e68ef47d},
  1149. {0x9a94dd3e8cf578b9, 0x82bb74f8301958cf},
  1150. {0xc13a148e3032d6e7, 0xe36a52363c1faf02},
  1151. {0xf18899b1bc3f8ca1, 0xdc44e6c3cb279ac2},
  1152. {0x96f5600f15a7b7e5, 0x29ab103a5ef8c0ba},
  1153. {0xbcb2b812db11a5de, 0x7415d448f6b6f0e8},
  1154. {0xebdf661791d60f56, 0x111b495b3464ad22},
  1155. {0x936b9fcebb25c995, 0xcab10dd900beec35},
  1156. {0xb84687c269ef3bfb, 0x3d5d514f40eea743},
  1157. {0xe65829b3046b0afa, 0x0cb4a5a3112a5113},
  1158. {0x8ff71a0fe2c2e6dc, 0x47f0e785eaba72ac},
  1159. {0xb3f4e093db73a093, 0x59ed216765690f57},
  1160. {0xe0f218b8d25088b8, 0x306869c13ec3532d},
  1161. {0x8c974f7383725573, 0x1e414218c73a13fc},
  1162. {0xafbd2350644eeacf, 0xe5d1929ef90898fb},
  1163. {0xdbac6c247d62a583, 0xdf45f746b74abf3a},
  1164. {0x894bc396ce5da772, 0x6b8bba8c328eb784},
  1165. {0xab9eb47c81f5114f, 0x066ea92f3f326565},
  1166. {0xd686619ba27255a2, 0xc80a537b0efefebe},
  1167. {0x8613fd0145877585, 0xbd06742ce95f5f37},
  1168. {0xa798fc4196e952e7, 0x2c48113823b73705},
  1169. {0xd17f3b51fca3a7a0, 0xf75a15862ca504c6},
  1170. {0x82ef85133de648c4, 0x9a984d73dbe722fc},
  1171. {0xa3ab66580d5fdaf5, 0xc13e60d0d2e0ebbb},
  1172. {0xcc963fee10b7d1b3, 0x318df905079926a9},
  1173. {0xffbbcfe994e5c61f, 0xfdf17746497f7053},
  1174. {0x9fd561f1fd0f9bd3, 0xfeb6ea8bedefa634},
  1175. {0xc7caba6e7c5382c8, 0xfe64a52ee96b8fc1},
  1176. {0xf9bd690a1b68637b, 0x3dfdce7aa3c673b1},
  1177. {0x9c1661a651213e2d, 0x06bea10ca65c084f},
  1178. {0xc31bfa0fe5698db8, 0x486e494fcff30a63},
  1179. {0xf3e2f893dec3f126, 0x5a89dba3c3efccfb},
  1180. {0x986ddb5c6b3a76b7, 0xf89629465a75e01d},
  1181. {0xbe89523386091465, 0xf6bbb397f1135824},
  1182. {0xee2ba6c0678b597f, 0x746aa07ded582e2d},
  1183. {0x94db483840b717ef, 0xa8c2a44eb4571cdd},
  1184. {0xba121a4650e4ddeb, 0x92f34d62616ce414},
  1185. {0xe896a0d7e51e1566, 0x77b020baf9c81d18},
  1186. {0x915e2486ef32cd60, 0x0ace1474dc1d122f},
  1187. {0xb5b5ada8aaff80b8, 0x0d819992132456bb},
  1188. {0xe3231912d5bf60e6, 0x10e1fff697ed6c6a},
  1189. {0x8df5efabc5979c8f, 0xca8d3ffa1ef463c2},
  1190. {0xb1736b96b6fd83b3, 0xbd308ff8a6b17cb3},
  1191. {0xddd0467c64bce4a0, 0xac7cb3f6d05ddbdf},
  1192. {0x8aa22c0dbef60ee4, 0x6bcdf07a423aa96c},
  1193. {0xad4ab7112eb3929d, 0x86c16c98d2c953c7},
  1194. {0xd89d64d57a607744, 0xe871c7bf077ba8b8},
  1195. {0x87625f056c7c4a8b, 0x11471cd764ad4973},
  1196. {0xa93af6c6c79b5d2d, 0xd598e40d3dd89bd0},
  1197. {0xd389b47879823479, 0x4aff1d108d4ec2c4},
  1198. {0x843610cb4bf160cb, 0xcedf722a585139bb},
  1199. {0xa54394fe1eedb8fe, 0xc2974eb4ee658829},
  1200. {0xce947a3da6a9273e, 0x733d226229feea33},
  1201. {0x811ccc668829b887, 0x0806357d5a3f5260},
  1202. {0xa163ff802a3426a8, 0xca07c2dcb0cf26f8},
  1203. {0xc9bcff6034c13052, 0xfc89b393dd02f0b6},
  1204. {0xfc2c3f3841f17c67, 0xbbac2078d443ace3},
  1205. {0x9d9ba7832936edc0, 0xd54b944b84aa4c0e},
  1206. {0xc5029163f384a931, 0x0a9e795e65d4df12},
  1207. {0xf64335bcf065d37d, 0x4d4617b5ff4a16d6},
  1208. {0x99ea0196163fa42e, 0x504bced1bf8e4e46},
  1209. {0xc06481fb9bcf8d39, 0xe45ec2862f71e1d7},
  1210. {0xf07da27a82c37088, 0x5d767327bb4e5a4d},
  1211. {0x964e858c91ba2655, 0x3a6a07f8d510f870},
  1212. {0xbbe226efb628afea, 0x890489f70a55368c},
  1213. {0xeadab0aba3b2dbe5, 0x2b45ac74ccea842f},
  1214. {0x92c8ae6b464fc96f, 0x3b0b8bc90012929e},
  1215. {0xb77ada0617e3bbcb, 0x09ce6ebb40173745},
  1216. {0xe55990879ddcaabd, 0xcc420a6a101d0516},
  1217. {0x8f57fa54c2a9eab6, 0x9fa946824a12232e},
  1218. {0xb32df8e9f3546564, 0x47939822dc96abfa},
  1219. {0xdff9772470297ebd, 0x59787e2b93bc56f8},
  1220. {0x8bfbea76c619ef36, 0x57eb4edb3c55b65b},
  1221. {0xaefae51477a06b03, 0xede622920b6b23f2},
  1222. {0xdab99e59958885c4, 0xe95fab368e45ecee},
  1223. {0x88b402f7fd75539b, 0x11dbcb0218ebb415},
  1224. {0xaae103b5fcd2a881, 0xd652bdc29f26a11a},
  1225. {0xd59944a37c0752a2, 0x4be76d3346f04960},
  1226. {0x857fcae62d8493a5, 0x6f70a4400c562ddc},
  1227. {0xa6dfbd9fb8e5b88e, 0xcb4ccd500f6bb953},
  1228. {0xd097ad07a71f26b2, 0x7e2000a41346a7a8},
  1229. {0x825ecc24c873782f, 0x8ed400668c0c28c9},
  1230. {0xa2f67f2dfa90563b, 0x728900802f0f32fb},
  1231. {0xcbb41ef979346bca, 0x4f2b40a03ad2ffba},
  1232. {0xfea126b7d78186bc, 0xe2f610c84987bfa9},
  1233. {0x9f24b832e6b0f436, 0x0dd9ca7d2df4d7ca},
  1234. {0xc6ede63fa05d3143, 0x91503d1c79720dbc},
  1235. {0xf8a95fcf88747d94, 0x75a44c6397ce912b},
  1236. {0x9b69dbe1b548ce7c, 0xc986afbe3ee11abb},
  1237. {0xc24452da229b021b, 0xfbe85badce996169},
  1238. {0xf2d56790ab41c2a2, 0xfae27299423fb9c4},
  1239. {0x97c560ba6b0919a5, 0xdccd879fc967d41b},
  1240. {0xbdb6b8e905cb600f, 0x5400e987bbc1c921},
  1241. {0xed246723473e3813, 0x290123e9aab23b69},
  1242. {0x9436c0760c86e30b, 0xf9a0b6720aaf6522},
  1243. {0xb94470938fa89bce, 0xf808e40e8d5b3e6a},
  1244. {0xe7958cb87392c2c2, 0xb60b1d1230b20e05},
  1245. {0x90bd77f3483bb9b9, 0xb1c6f22b5e6f48c3},
  1246. {0xb4ecd5f01a4aa828, 0x1e38aeb6360b1af4},
  1247. {0xe2280b6c20dd5232, 0x25c6da63c38de1b1},
  1248. {0x8d590723948a535f, 0x579c487e5a38ad0f},
  1249. {0xb0af48ec79ace837, 0x2d835a9df0c6d852},
  1250. {0xdcdb1b2798182244, 0xf8e431456cf88e66},
  1251. {0x8a08f0f8bf0f156b, 0x1b8e9ecb641b5900},
  1252. {0xac8b2d36eed2dac5, 0xe272467e3d222f40},
  1253. {0xd7adf884aa879177, 0x5b0ed81dcc6abb10},
  1254. {0x86ccbb52ea94baea, 0x98e947129fc2b4ea},
  1255. {0xa87fea27a539e9a5, 0x3f2398d747b36225},
  1256. {0xd29fe4b18e88640e, 0x8eec7f0d19a03aae},
  1257. {0x83a3eeeef9153e89, 0x1953cf68300424ad},
  1258. {0xa48ceaaab75a8e2b, 0x5fa8c3423c052dd8},
  1259. {0xcdb02555653131b6, 0x3792f412cb06794e},
  1260. {0x808e17555f3ebf11, 0xe2bbd88bbee40bd1},
  1261. {0xa0b19d2ab70e6ed6, 0x5b6aceaeae9d0ec5},
  1262. {0xc8de047564d20a8b, 0xf245825a5a445276},
  1263. {0xfb158592be068d2e, 0xeed6e2f0f0d56713},
  1264. {0x9ced737bb6c4183d, 0x55464dd69685606c},
  1265. {0xc428d05aa4751e4c, 0xaa97e14c3c26b887},
  1266. {0xf53304714d9265df, 0xd53dd99f4b3066a9},
  1267. {0x993fe2c6d07b7fab, 0xe546a8038efe402a},
  1268. {0xbf8fdb78849a5f96, 0xde98520472bdd034},
  1269. {0xef73d256a5c0f77c, 0x963e66858f6d4441},
  1270. {0x95a8637627989aad, 0xdde7001379a44aa9},
  1271. {0xbb127c53b17ec159, 0x5560c018580d5d53},
  1272. {0xe9d71b689dde71af, 0xaab8f01e6e10b4a7},
  1273. {0x9226712162ab070d, 0xcab3961304ca70e9},
  1274. {0xb6b00d69bb55c8d1, 0x3d607b97c5fd0d23},
  1275. {0xe45c10c42a2b3b05, 0x8cb89a7db77c506b},
  1276. {0x8eb98a7a9a5b04e3, 0x77f3608e92adb243},
  1277. {0xb267ed1940f1c61c, 0x55f038b237591ed4},
  1278. {0xdf01e85f912e37a3, 0x6b6c46dec52f6689},
  1279. {0x8b61313bbabce2c6, 0x2323ac4b3b3da016},
  1280. {0xae397d8aa96c1b77, 0xabec975e0a0d081b},
  1281. {0xd9c7dced53c72255, 0x96e7bd358c904a22},
  1282. {0x881cea14545c7575, 0x7e50d64177da2e55},
  1283. {0xaa242499697392d2, 0xdde50bd1d5d0b9ea},
  1284. {0xd4ad2dbfc3d07787, 0x955e4ec64b44e865},
  1285. {0x84ec3c97da624ab4, 0xbd5af13bef0b113f},
  1286. {0xa6274bbdd0fadd61, 0xecb1ad8aeacdd58f},
  1287. {0xcfb11ead453994ba, 0x67de18eda5814af3},
  1288. {0x81ceb32c4b43fcf4, 0x80eacf948770ced8},
  1289. {0xa2425ff75e14fc31, 0xa1258379a94d028e},
  1290. {0xcad2f7f5359a3b3e, 0x096ee45813a04331},
  1291. {0xfd87b5f28300ca0d, 0x8bca9d6e188853fd},
  1292. {0x9e74d1b791e07e48, 0x775ea264cf55347e},
  1293. {0xc612062576589dda, 0x95364afe032a819e},
  1294. {0xf79687aed3eec551, 0x3a83ddbd83f52205},
  1295. {0x9abe14cd44753b52, 0xc4926a9672793543},
  1296. {0xc16d9a0095928a27, 0x75b7053c0f178294},
  1297. {0xf1c90080baf72cb1, 0x5324c68b12dd6339},
  1298. {0x971da05074da7bee, 0xd3f6fc16ebca5e04},
  1299. {0xbce5086492111aea, 0x88f4bb1ca6bcf585},
  1300. {0xec1e4a7db69561a5, 0x2b31e9e3d06c32e6},
  1301. {0x9392ee8e921d5d07, 0x3aff322e62439fd0},
  1302. {0xb877aa3236a4b449, 0x09befeb9fad487c3},
  1303. {0xe69594bec44de15b, 0x4c2ebe687989a9b4},
  1304. {0x901d7cf73ab0acd9, 0x0f9d37014bf60a11},
  1305. {0xb424dc35095cd80f, 0x538484c19ef38c95},
  1306. {0xe12e13424bb40e13, 0x2865a5f206b06fba},
  1307. {0x8cbccc096f5088cb, 0xf93f87b7442e45d4},
  1308. {0xafebff0bcb24aafe, 0xf78f69a51539d749},
  1309. {0xdbe6fecebdedd5be, 0xb573440e5a884d1c},
  1310. {0x89705f4136b4a597, 0x31680a88f8953031},
  1311. {0xabcc77118461cefc, 0xfdc20d2b36ba7c3e},
  1312. {0xd6bf94d5e57a42bc, 0x3d32907604691b4d},
  1313. {0x8637bd05af6c69b5, 0xa63f9a49c2c1b110},
  1314. {0xa7c5ac471b478423, 0x0fcf80dc33721d54},
  1315. {0xd1b71758e219652b, 0xd3c36113404ea4a9},
  1316. {0x83126e978d4fdf3b, 0x645a1cac083126ea},
  1317. {0xa3d70a3d70a3d70a, 0x3d70a3d70a3d70a4},
  1318. {0xcccccccccccccccc, 0xcccccccccccccccd},
  1319. {0x8000000000000000, 0x0000000000000000},
  1320. {0xa000000000000000, 0x0000000000000000},
  1321. {0xc800000000000000, 0x0000000000000000},
  1322. {0xfa00000000000000, 0x0000000000000000},
  1323. {0x9c40000000000000, 0x0000000000000000},
  1324. {0xc350000000000000, 0x0000000000000000},
  1325. {0xf424000000000000, 0x0000000000000000},
  1326. {0x9896800000000000, 0x0000000000000000},
  1327. {0xbebc200000000000, 0x0000000000000000},
  1328. {0xee6b280000000000, 0x0000000000000000},
  1329. {0x9502f90000000000, 0x0000000000000000},
  1330. {0xba43b74000000000, 0x0000000000000000},
  1331. {0xe8d4a51000000000, 0x0000000000000000},
  1332. {0x9184e72a00000000, 0x0000000000000000},
  1333. {0xb5e620f480000000, 0x0000000000000000},
  1334. {0xe35fa931a0000000, 0x0000000000000000},
  1335. {0x8e1bc9bf04000000, 0x0000000000000000},
  1336. {0xb1a2bc2ec5000000, 0x0000000000000000},
  1337. {0xde0b6b3a76400000, 0x0000000000000000},
  1338. {0x8ac7230489e80000, 0x0000000000000000},
  1339. {0xad78ebc5ac620000, 0x0000000000000000},
  1340. {0xd8d726b7177a8000, 0x0000000000000000},
  1341. {0x878678326eac9000, 0x0000000000000000},
  1342. {0xa968163f0a57b400, 0x0000000000000000},
  1343. {0xd3c21bcecceda100, 0x0000000000000000},
  1344. {0x84595161401484a0, 0x0000000000000000},
  1345. {0xa56fa5b99019a5c8, 0x0000000000000000},
  1346. {0xcecb8f27f4200f3a, 0x0000000000000000},
  1347. {0x813f3978f8940984, 0x4000000000000000},
  1348. {0xa18f07d736b90be5, 0x5000000000000000},
  1349. {0xc9f2c9cd04674ede, 0xa400000000000000},
  1350. {0xfc6f7c4045812296, 0x4d00000000000000},
  1351. {0x9dc5ada82b70b59d, 0xf020000000000000},
  1352. {0xc5371912364ce305, 0x6c28000000000000},
  1353. {0xf684df56c3e01bc6, 0xc732000000000000},
  1354. {0x9a130b963a6c115c, 0x3c7f400000000000},
  1355. {0xc097ce7bc90715b3, 0x4b9f100000000000},
  1356. {0xf0bdc21abb48db20, 0x1e86d40000000000},
  1357. {0x96769950b50d88f4, 0x1314448000000000},
  1358. {0xbc143fa4e250eb31, 0x17d955a000000000},
  1359. {0xeb194f8e1ae525fd, 0x5dcfab0800000000},
  1360. {0x92efd1b8d0cf37be, 0x5aa1cae500000000},
  1361. {0xb7abc627050305ad, 0xf14a3d9e40000000},
  1362. {0xe596b7b0c643c719, 0x6d9ccd05d0000000},
  1363. {0x8f7e32ce7bea5c6f, 0xe4820023a2000000},
  1364. {0xb35dbf821ae4f38b, 0xdda2802c8a800000},
  1365. {0xe0352f62a19e306e, 0xd50b2037ad200000},
  1366. {0x8c213d9da502de45, 0x4526f422cc340000},
  1367. {0xaf298d050e4395d6, 0x9670b12b7f410000},
  1368. {0xdaf3f04651d47b4c, 0x3c0cdd765f114000},
  1369. {0x88d8762bf324cd0f, 0xa5880a69fb6ac800},
  1370. {0xab0e93b6efee0053, 0x8eea0d047a457a00},
  1371. {0xd5d238a4abe98068, 0x72a4904598d6d880},
  1372. {0x85a36366eb71f041, 0x47a6da2b7f864750},
  1373. {0xa70c3c40a64e6c51, 0x999090b65f67d924},
  1374. {0xd0cf4b50cfe20765, 0xfff4b4e3f741cf6d},
  1375. {0x82818f1281ed449f, 0xbff8f10e7a8921a4},
  1376. {0xa321f2d7226895c7, 0xaff72d52192b6a0d},
  1377. {0xcbea6f8ceb02bb39, 0x9bf4f8a69f764490},
  1378. {0xfee50b7025c36a08, 0x02f236d04753d5b4},
  1379. {0x9f4f2726179a2245, 0x01d762422c946590},
  1380. {0xc722f0ef9d80aad6, 0x424d3ad2b7b97ef5},
  1381. {0xf8ebad2b84e0d58b, 0xd2e0898765a7deb2},
  1382. {0x9b934c3b330c8577, 0x63cc55f49f88eb2f},
  1383. {0xc2781f49ffcfa6d5, 0x3cbf6b71c76b25fb},
  1384. {0xf316271c7fc3908a, 0x8bef464e3945ef7a},
  1385. {0x97edd871cfda3a56, 0x97758bf0e3cbb5ac},
  1386. {0xbde94e8e43d0c8ec, 0x3d52eeed1cbea317},
  1387. {0xed63a231d4c4fb27, 0x4ca7aaa863ee4bdd},
  1388. {0x945e455f24fb1cf8, 0x8fe8caa93e74ef6a},
  1389. {0xb975d6b6ee39e436, 0xb3e2fd538e122b44},
  1390. {0xe7d34c64a9c85d44, 0x60dbbca87196b616},
  1391. {0x90e40fbeea1d3a4a, 0xbc8955e946fe31cd},
  1392. {0xb51d13aea4a488dd, 0x6babab6398bdbe41},
  1393. {0xe264589a4dcdab14, 0xc696963c7eed2dd1},
  1394. {0x8d7eb76070a08aec, 0xfc1e1de5cf543ca2},
  1395. {0xb0de65388cc8ada8, 0x3b25a55f43294bcb},
  1396. {0xdd15fe86affad912, 0x49ef0eb713f39ebe},
  1397. {0x8a2dbf142dfcc7ab, 0x6e3569326c784337},
  1398. {0xacb92ed9397bf996, 0x49c2c37f07965404},
  1399. {0xd7e77a8f87daf7fb, 0xdc33745ec97be906},
  1400. {0x86f0ac99b4e8dafd, 0x69a028bb3ded71a3},
  1401. {0xa8acd7c0222311bc, 0xc40832ea0d68ce0c},
  1402. {0xd2d80db02aabd62b, 0xf50a3fa490c30190},
  1403. {0x83c7088e1aab65db, 0x792667c6da79e0fa},
  1404. {0xa4b8cab1a1563f52, 0x577001b891185938},
  1405. {0xcde6fd5e09abcf26, 0xed4c0226b55e6f86},
  1406. {0x80b05e5ac60b6178, 0x544f8158315b05b4},
  1407. {0xa0dc75f1778e39d6, 0x696361ae3db1c721},
  1408. {0xc913936dd571c84c, 0x03bc3a19cd1e38e9},
  1409. {0xfb5878494ace3a5f, 0x04ab48a04065c723},
  1410. {0x9d174b2dcec0e47b, 0x62eb0d64283f9c76},
  1411. {0xc45d1df942711d9a, 0x3ba5d0bd324f8394},
  1412. {0xf5746577930d6500, 0xca8f44ec7ee36479},
  1413. {0x9968bf6abbe85f20, 0x7e998b13cf4e1ecb},
  1414. {0xbfc2ef456ae276e8, 0x9e3fedd8c321a67e},
  1415. {0xefb3ab16c59b14a2, 0xc5cfe94ef3ea101e},
  1416. {0x95d04aee3b80ece5, 0xbba1f1d158724a12},
  1417. {0xbb445da9ca61281f, 0x2a8a6e45ae8edc97},
  1418. {0xea1575143cf97226, 0xf52d09d71a3293bd},
  1419. {0x924d692ca61be758, 0x593c2626705f9c56},
  1420. {0xb6e0c377cfa2e12e, 0x6f8b2fb00c77836c},
  1421. {0xe498f455c38b997a, 0x0b6dfb9c0f956447},
  1422. {0x8edf98b59a373fec, 0x4724bd4189bd5eac},
  1423. {0xb2977ee300c50fe7, 0x58edec91ec2cb657},
  1424. {0xdf3d5e9bc0f653e1, 0x2f2967b66737e3ed},
  1425. {0x8b865b215899f46c, 0xbd79e0d20082ee74},
  1426. {0xae67f1e9aec07187, 0xecd8590680a3aa11},
  1427. {0xda01ee641a708de9, 0xe80e6f4820cc9495},
  1428. {0x884134fe908658b2, 0x3109058d147fdcdd},
  1429. {0xaa51823e34a7eede, 0xbd4b46f0599fd415},
  1430. {0xd4e5e2cdc1d1ea96, 0x6c9e18ac7007c91a},
  1431. {0x850fadc09923329e, 0x03e2cf6bc604ddb0},
  1432. {0xa6539930bf6bff45, 0x84db8346b786151c},
  1433. {0xcfe87f7cef46ff16, 0xe612641865679a63},
  1434. {0x81f14fae158c5f6e, 0x4fcb7e8f3f60c07e},
  1435. {0xa26da3999aef7749, 0xe3be5e330f38f09d},
  1436. {0xcb090c8001ab551c, 0x5cadf5bfd3072cc5},
  1437. {0xfdcb4fa002162a63, 0x73d9732fc7c8f7f6},
  1438. {0x9e9f11c4014dda7e, 0x2867e7fddcdd9afa},
  1439. {0xc646d63501a1511d, 0xb281e1fd541501b8},
  1440. {0xf7d88bc24209a565, 0x1f225a7ca91a4226},
  1441. {0x9ae757596946075f, 0x3375788de9b06958},
  1442. {0xc1a12d2fc3978937, 0x0052d6b1641c83ae},
  1443. {0xf209787bb47d6b84, 0xc0678c5dbd23a49a},
  1444. {0x9745eb4d50ce6332, 0xf840b7ba963646e0},
  1445. {0xbd176620a501fbff, 0xb650e5a93bc3d898},
  1446. {0xec5d3fa8ce427aff, 0xa3e51f138ab4cebe},
  1447. {0x93ba47c980e98cdf, 0xc66f336c36b10137},
  1448. {0xb8a8d9bbe123f017, 0xb80b0047445d4184},
  1449. {0xe6d3102ad96cec1d, 0xa60dc059157491e5},
  1450. {0x9043ea1ac7e41392, 0x87c89837ad68db2f},
  1451. {0xb454e4a179dd1877, 0x29babe4598c311fb},
  1452. {0xe16a1dc9d8545e94, 0xf4296dd6fef3d67a},
  1453. {0x8ce2529e2734bb1d, 0x1899e4a65f58660c},
  1454. {0xb01ae745b101e9e4, 0x5ec05dcff72e7f8f},
  1455. {0xdc21a1171d42645d, 0x76707543f4fa1f73},
  1456. {0x899504ae72497eba, 0x6a06494a791c53a8},
  1457. {0xabfa45da0edbde69, 0x0487db9d17636892},
  1458. {0xd6f8d7509292d603, 0x45a9d2845d3c42b6},
  1459. {0x865b86925b9bc5c2, 0x0b8a2392ba45a9b2},
  1460. {0xa7f26836f282b732, 0x8e6cac7768d7141e},
  1461. {0xd1ef0244af2364ff, 0x3207d795430cd926},
  1462. {0x8335616aed761f1f, 0x7f44e6bd49e807b8},
  1463. {0xa402b9c5a8d3a6e7, 0x5f16206c9c6209a6},
  1464. {0xcd036837130890a1, 0x36dba887c37a8c0f},
  1465. {0x802221226be55a64, 0xc2494954da2c9789},
  1466. {0xa02aa96b06deb0fd, 0xf2db9baa10b7bd6c},
  1467. {0xc83553c5c8965d3d, 0x6f92829494e5acc7},
  1468. {0xfa42a8b73abbf48c, 0xcb772339ba1f17f9},
  1469. {0x9c69a97284b578d7, 0xff2a760414536efb},
  1470. {0xc38413cf25e2d70d, 0xfef5138519684aba},
  1471. {0xf46518c2ef5b8cd1, 0x7eb258665fc25d69},
  1472. {0x98bf2f79d5993802, 0xef2f773ffbd97a61},
  1473. {0xbeeefb584aff8603, 0xaafb550ffacfd8fa},
  1474. {0xeeaaba2e5dbf6784, 0x95ba2a53f983cf38},
  1475. {0x952ab45cfa97a0b2, 0xdd945a747bf26183},
  1476. {0xba756174393d88df, 0x94f971119aeef9e4},
  1477. {0xe912b9d1478ceb17, 0x7a37cd5601aab85d},
  1478. {0x91abb422ccb812ee, 0xac62e055c10ab33a},
  1479. {0xb616a12b7fe617aa, 0x577b986b314d6009},
  1480. {0xe39c49765fdf9d94, 0xed5a7e85fda0b80b},
  1481. {0x8e41ade9fbebc27d, 0x14588f13be847307},
  1482. {0xb1d219647ae6b31c, 0x596eb2d8ae258fc8},
  1483. {0xde469fbd99a05fe3, 0x6fca5f8ed9aef3bb},
  1484. {0x8aec23d680043bee, 0x25de7bb9480d5854},
  1485. {0xada72ccc20054ae9, 0xaf561aa79a10ae6a},
  1486. {0xd910f7ff28069da4, 0x1b2ba1518094da04},
  1487. {0x87aa9aff79042286, 0x90fb44d2f05d0842},
  1488. {0xa99541bf57452b28, 0x353a1607ac744a53},
  1489. {0xd3fa922f2d1675f2, 0x42889b8997915ce8},
  1490. {0x847c9b5d7c2e09b7, 0x69956135febada11},
  1491. {0xa59bc234db398c25, 0x43fab9837e699095},
  1492. {0xcf02b2c21207ef2e, 0x94f967e45e03f4bb},
  1493. {0x8161afb94b44f57d, 0x1d1be0eebac278f5},
  1494. {0xa1ba1ba79e1632dc, 0x6462d92a69731732},
  1495. {0xca28a291859bbf93, 0x7d7b8f7503cfdcfe},
  1496. {0xfcb2cb35e702af78, 0x5cda735244c3d43e},
  1497. {0x9defbf01b061adab, 0x3a0888136afa64a7},
  1498. {0xc56baec21c7a1916, 0x088aaa1845b8fdd0},
  1499. {0xf6c69a72a3989f5b, 0x8aad549e57273d45},
  1500. {0x9a3c2087a63f6399, 0x36ac54e2f678864b},
  1501. {0xc0cb28a98fcf3c7f, 0x84576a1bb416a7dd},
  1502. {0xf0fdf2d3f3c30b9f, 0x656d44a2a11c51d5},
  1503. {0x969eb7c47859e743, 0x9f644ae5a4b1b325},
  1504. {0xbc4665b596706114, 0x873d5d9f0dde1fee},
  1505. {0xeb57ff22fc0c7959, 0xa90cb506d155a7ea},
  1506. {0x9316ff75dd87cbd8, 0x09a7f12442d588f2},
  1507. {0xb7dcbf5354e9bece, 0x0c11ed6d538aeb2f},
  1508. {0xe5d3ef282a242e81, 0x8f1668c8a86da5fa},
  1509. {0x8fa475791a569d10, 0xf96e017d694487bc},
  1510. {0xb38d92d760ec4455, 0x37c981dcc395a9ac},
  1511. {0xe070f78d3927556a, 0x85bbe253f47b1417},
  1512. {0x8c469ab843b89562, 0x93956d7478ccec8e},
  1513. {0xaf58416654a6babb, 0x387ac8d1970027b2},
  1514. {0xdb2e51bfe9d0696a, 0x06997b05fcc0319e},
  1515. {0x88fcf317f22241e2, 0x441fece3bdf81f03},
  1516. {0xab3c2fddeeaad25a, 0xd527e81cad7626c3},
  1517. {0xd60b3bd56a5586f1, 0x8a71e223d8d3b074},
  1518. {0x85c7056562757456, 0xf6872d5667844e49},
  1519. {0xa738c6bebb12d16c, 0xb428f8ac016561db},
  1520. {0xd106f86e69d785c7, 0xe13336d701beba52},
  1521. {0x82a45b450226b39c, 0xecc0024661173473},
  1522. {0xa34d721642b06084, 0x27f002d7f95d0190},
  1523. {0xcc20ce9bd35c78a5, 0x31ec038df7b441f4},
  1524. {0xff290242c83396ce, 0x7e67047175a15271},
  1525. {0x9f79a169bd203e41, 0x0f0062c6e984d386},
  1526. {0xc75809c42c684dd1, 0x52c07b78a3e60868},
  1527. {0xf92e0c3537826145, 0xa7709a56ccdf8a82},
  1528. {0x9bbcc7a142b17ccb, 0x88a66076400bb691},
  1529. {0xc2abf989935ddbfe, 0x6acff893d00ea435},
  1530. {0xf356f7ebf83552fe, 0x0583f6b8c4124d43},
  1531. {0x98165af37b2153de, 0xc3727a337a8b704a},
  1532. {0xbe1bf1b059e9a8d6, 0x744f18c0592e4c5c},
  1533. {0xeda2ee1c7064130c, 0x1162def06f79df73},
  1534. {0x9485d4d1c63e8be7, 0x8addcb5645ac2ba8},
  1535. {0xb9a74a0637ce2ee1, 0x6d953e2bd7173692},
  1536. {0xe8111c87c5c1ba99, 0xc8fa8db6ccdd0437},
  1537. {0x910ab1d4db9914a0, 0x1d9c9892400a22a2},
  1538. {0xb54d5e4a127f59c8, 0x2503beb6d00cab4b},
  1539. {0xe2a0b5dc971f303a, 0x2e44ae64840fd61d},
  1540. {0x8da471a9de737e24, 0x5ceaecfed289e5d2},
  1541. {0xb10d8e1456105dad, 0x7425a83e872c5f47},
  1542. {0xdd50f1996b947518, 0xd12f124e28f77719},
  1543. {0x8a5296ffe33cc92f, 0x82bd6b70d99aaa6f},
  1544. {0xace73cbfdc0bfb7b, 0x636cc64d1001550b},
  1545. {0xd8210befd30efa5a, 0x3c47f7e05401aa4e},
  1546. {0x8714a775e3e95c78, 0x65acfaec34810a71},
  1547. {0xa8d9d1535ce3b396, 0x7f1839a741a14d0d},
  1548. {0xd31045a8341ca07c, 0x1ede48111209a050},
  1549. {0x83ea2b892091e44d, 0x934aed0aab460432},
  1550. {0xa4e4b66b68b65d60, 0xf81da84d5617853f},
  1551. {0xce1de40642e3f4b9, 0x36251260ab9d668e},
  1552. {0x80d2ae83e9ce78f3, 0xc1d72b7c6b426019},
  1553. {0xa1075a24e4421730, 0xb24cf65b8612f81f},
  1554. {0xc94930ae1d529cfc, 0xdee033f26797b627},
  1555. {0xfb9b7cd9a4a7443c, 0x169840ef017da3b1},
  1556. {0x9d412e0806e88aa5, 0x8e1f289560ee864e},
  1557. {0xc491798a08a2ad4e, 0xf1a6f2bab92a27e2},
  1558. {0xf5b5d7ec8acb58a2, 0xae10af696774b1db},
  1559. {0x9991a6f3d6bf1765, 0xacca6da1e0a8ef29},
  1560. {0xbff610b0cc6edd3f, 0x17fd090a58d32af3},
  1561. {0xeff394dcff8a948e, 0xddfc4b4cef07f5b0},
  1562. {0x95f83d0a1fb69cd9, 0x4abdaf101564f98e},
  1563. {0xbb764c4ca7a4440f, 0x9d6d1ad41abe37f1},
  1564. {0xea53df5fd18d5513, 0x84c86189216dc5ed},
  1565. {0x92746b9be2f8552c, 0x32fd3cf5b4e49bb4},
  1566. {0xb7118682dbb66a77, 0x3fbc8c33221dc2a1},
  1567. {0xe4d5e82392a40515, 0x0fabaf3feaa5334a},
  1568. {0x8f05b1163ba6832d, 0x29cb4d87f2a7400e},
  1569. {0xb2c71d5bca9023f8, 0x743e20e9ef511012},
  1570. {0xdf78e4b2bd342cf6, 0x914da9246b255416},
  1571. {0x8bab8eefb6409c1a, 0x1ad089b6c2f7548e},
  1572. {0xae9672aba3d0c320, 0xa184ac2473b529b1},
  1573. {0xda3c0f568cc4f3e8, 0xc9e5d72d90a2741e},
  1574. {0x8865899617fb1871, 0x7e2fa67c7a658892},
  1575. {0xaa7eebfb9df9de8d, 0xddbb901b98feeab7},
  1576. {0xd51ea6fa85785631, 0x552a74227f3ea565},
  1577. {0x8533285c936b35de, 0xd53a88958f87275f},
  1578. {0xa67ff273b8460356, 0x8a892abaf368f137},
  1579. {0xd01fef10a657842c, 0x2d2b7569b0432d85},
  1580. {0x8213f56a67f6b29b, 0x9c3b29620e29fc73},
  1581. {0xa298f2c501f45f42, 0x8349f3ba91b47b8f},
  1582. {0xcb3f2f7642717713, 0x241c70a936219a73},
  1583. {0xfe0efb53d30dd4d7, 0xed238cd383aa0110},
  1584. {0x9ec95d1463e8a506, 0xf4363804324a40aa},
  1585. {0xc67bb4597ce2ce48, 0xb143c6053edcd0d5},
  1586. {0xf81aa16fdc1b81da, 0xdd94b7868e94050a},
  1587. {0x9b10a4e5e9913128, 0xca7cf2b4191c8326},
  1588. {0xc1d4ce1f63f57d72, 0xfd1c2f611f63a3f0},
  1589. {0xf24a01a73cf2dccf, 0xbc633b39673c8cec},
  1590. {0x976e41088617ca01, 0xd5be0503e085d813},
  1591. {0xbd49d14aa79dbc82, 0x4b2d8644d8a74e18},
  1592. {0xec9c459d51852ba2, 0xddf8e7d60ed1219e},
  1593. {0x93e1ab8252f33b45, 0xcabb90e5c942b503},
  1594. {0xb8da1662e7b00a17, 0x3d6a751f3b936243},
  1595. {0xe7109bfba19c0c9d, 0x0cc512670a783ad4},
  1596. {0x906a617d450187e2, 0x27fb2b80668b24c5},
  1597. {0xb484f9dc9641e9da, 0xb1f9f660802dedf6},
  1598. {0xe1a63853bbd26451, 0x5e7873f8a0396973},
  1599. {0x8d07e33455637eb2, 0xdb0b487b6423e1e8},
  1600. {0xb049dc016abc5e5f, 0x91ce1a9a3d2cda62},
  1601. {0xdc5c5301c56b75f7, 0x7641a140cc7810fb},
  1602. {0x89b9b3e11b6329ba, 0xa9e904c87fcb0a9d},
  1603. {0xac2820d9623bf429, 0x546345fa9fbdcd44},
  1604. {0xd732290fbacaf133, 0xa97c177947ad4095},
  1605. {0x867f59a9d4bed6c0, 0x49ed8eabcccc485d},
  1606. {0xa81f301449ee8c70, 0x5c68f256bfff5a74},
  1607. {0xd226fc195c6a2f8c, 0x73832eec6fff3111},
  1608. {0x83585d8fd9c25db7, 0xc831fd53c5ff7eab},
  1609. {0xa42e74f3d032f525, 0xba3e7ca8b77f5e55},
  1610. {0xcd3a1230c43fb26f, 0x28ce1bd2e55f35eb},
  1611. {0x80444b5e7aa7cf85, 0x7980d163cf5b81b3},
  1612. {0xa0555e361951c366, 0xd7e105bcc332621f},
  1613. {0xc86ab5c39fa63440, 0x8dd9472bf3fefaa7},
  1614. {0xfa856334878fc150, 0xb14f98f6f0feb951},
  1615. {0x9c935e00d4b9d8d2, 0x6ed1bf9a569f33d3},
  1616. {0xc3b8358109e84f07, 0x0a862f80ec4700c8},
  1617. {0xf4a642e14c6262c8, 0xcd27bb612758c0fa},
  1618. {0x98e7e9cccfbd7dbd, 0x8038d51cb897789c},
  1619. {0xbf21e44003acdd2c, 0xe0470a63e6bd56c3},
  1620. {0xeeea5d5004981478, 0x1858ccfce06cac74},
  1621. {0x95527a5202df0ccb, 0x0f37801e0c43ebc8},
  1622. {0xbaa718e68396cffd, 0xd30560258f54e6ba},
  1623. {0xe950df20247c83fd, 0x47c6b82ef32a2069},
  1624. {0x91d28b7416cdd27e, 0x4cdc331d57fa5441},
  1625. {0xb6472e511c81471d, 0xe0133fe4adf8e952},
  1626. {0xe3d8f9e563a198e5, 0x58180fddd97723a6},
  1627. {0x8e679c2f5e44ff8f, 0x570f09eaa7ea7648},
  1628. {0xb201833b35d63f73, 0x2cd2cc6551e513da},
  1629. {0xde81e40a034bcf4f, 0xf8077f7ea65e58d1},
  1630. {0x8b112e86420f6191, 0xfb04afaf27faf782},
  1631. {0xadd57a27d29339f6, 0x79c5db9af1f9b563},
  1632. {0xd94ad8b1c7380874, 0x18375281ae7822bc},
  1633. {0x87cec76f1c830548, 0x8f2293910d0b15b5},
  1634. {0xa9c2794ae3a3c69a, 0xb2eb3875504ddb22},
  1635. {0xd433179d9c8cb841, 0x5fa60692a46151eb},
  1636. {0x849feec281d7f328, 0xdbc7c41ba6bcd333},
  1637. {0xa5c7ea73224deff3, 0x12b9b522906c0800},
  1638. {0xcf39e50feae16bef, 0xd768226b34870a00},
  1639. {0x81842f29f2cce375, 0xe6a1158300d46640},
  1640. {0xa1e53af46f801c53, 0x60495ae3c1097fd0},
  1641. {0xca5e89b18b602368, 0x385bb19cb14bdfc4},
  1642. {0xfcf62c1dee382c42, 0x46729e03dd9ed7b5},
  1643. {0x9e19db92b4e31ba9, 0x6c07a2c26a8346d1},
  1644. {0xc5a05277621be293, 0xc7098b7305241885},
  1645. { 0xf70867153aa2db38,
  1646. 0xb8cbee4fc66d1ea7 }
  1647. #else
  1648. {0xff77b1fcbebcdc4f, 0x25e8e89c13bb0f7b},
  1649. {0xce5d73ff402d98e3, 0xfb0a3d212dc81290},
  1650. {0xa6b34ad8c9dfc06f, 0xf42faa48c0ea481f},
  1651. {0x86a8d39ef77164bc, 0xae5dff9c02033198},
  1652. {0xd98ddaee19068c76, 0x3badd624dd9b0958},
  1653. {0xafbd2350644eeacf, 0xe5d1929ef90898fb},
  1654. {0x8df5efabc5979c8f, 0xca8d3ffa1ef463c2},
  1655. {0xe55990879ddcaabd, 0xcc420a6a101d0516},
  1656. {0xb94470938fa89bce, 0xf808e40e8d5b3e6a},
  1657. {0x95a8637627989aad, 0xdde7001379a44aa9},
  1658. {0xf1c90080baf72cb1, 0x5324c68b12dd6339},
  1659. {0xc350000000000000, 0x0000000000000000},
  1660. {0x9dc5ada82b70b59d, 0xf020000000000000},
  1661. {0xfee50b7025c36a08, 0x02f236d04753d5b4},
  1662. {0xcde6fd5e09abcf26, 0xed4c0226b55e6f86},
  1663. {0xa6539930bf6bff45, 0x84db8346b786151c},
  1664. {0x865b86925b9bc5c2, 0x0b8a2392ba45a9b2},
  1665. {0xd910f7ff28069da4, 0x1b2ba1518094da04},
  1666. {0xaf58416654a6babb, 0x387ac8d1970027b2},
  1667. {0x8da471a9de737e24, 0x5ceaecfed289e5d2},
  1668. {0xe4d5e82392a40515, 0x0fabaf3feaa5334a},
  1669. {0xb8da1662e7b00a17, 0x3d6a751f3b936243},
  1670. { 0x95527a5202df0ccb,
  1671. 0x0f37801e0c43ebc8 }
  1672. #endif
  1673. };
  1674. #if FMT_USE_FULL_CACHE_DRAGONBOX
  1675. return pow10_significands[k - float_info<double>::min_k];
  1676. #else
  1677. static constexpr const uint64_t powers_of_5_64[] = {
  1678. 0x0000000000000001, 0x0000000000000005, 0x0000000000000019,
  1679. 0x000000000000007d, 0x0000000000000271, 0x0000000000000c35,
  1680. 0x0000000000003d09, 0x000000000001312d, 0x000000000005f5e1,
  1681. 0x00000000001dcd65, 0x00000000009502f9, 0x0000000002e90edd,
  1682. 0x000000000e8d4a51, 0x0000000048c27395, 0x000000016bcc41e9,
  1683. 0x000000071afd498d, 0x0000002386f26fc1, 0x000000b1a2bc2ec5,
  1684. 0x000003782dace9d9, 0x00001158e460913d, 0x000056bc75e2d631,
  1685. 0x0001b1ae4d6e2ef5, 0x000878678326eac9, 0x002a5a058fc295ed,
  1686. 0x00d3c21bcecceda1, 0x0422ca8b0a00a425, 0x14adf4b7320334b9};
  1687. static constexpr const uint32_t pow10_recovery_errors[] = {
  1688. 0x50001400, 0x54044100, 0x54014555, 0x55954415, 0x54115555, 0x00000001,
  1689. 0x50000000, 0x00104000, 0x54010004, 0x05004001, 0x55555544, 0x41545555,
  1690. 0x54040551, 0x15445545, 0x51555514, 0x10000015, 0x00101100, 0x01100015,
  1691. 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x04450514, 0x45414110,
  1692. 0x55555145, 0x50544050, 0x15040155, 0x11054140, 0x50111514, 0x11451454,
  1693. 0x00400541, 0x00000000, 0x55555450, 0x10056551, 0x10054011, 0x55551014,
  1694. 0x69514555, 0x05151109, 0x00155555};
  1695. static const int compression_ratio = 27;
  1696. // Compute base index.
  1697. int cache_index = (k - float_info<double>::min_k) / compression_ratio;
  1698. int kb = cache_index * compression_ratio + float_info<double>::min_k;
  1699. int offset = k - kb;
  1700. // Get base cache.
  1701. uint128_wrapper base_cache = pow10_significands[cache_index];
  1702. if (offset == 0) return base_cache;
  1703. // Compute the required amount of bit-shift.
  1704. int alpha = floor_log2_pow10(kb + offset) - floor_log2_pow10(kb) - offset;
  1705. FMT_ASSERT(alpha > 0 && alpha < 64, "shifting error detected");
  1706. // Try to recover the real cache.
  1707. uint64_t pow5 = powers_of_5_64[offset];
  1708. uint128_wrapper recovered_cache = umul128(base_cache.high(), pow5);
  1709. uint128_wrapper middle_low =
  1710. umul128(base_cache.low() - (kb < 0 ? 1u : 0u), pow5);
  1711. recovered_cache += middle_low.high();
  1712. uint64_t high_to_middle = recovered_cache.high() << (64 - alpha);
  1713. uint64_t middle_to_low = recovered_cache.low() << (64 - alpha);
  1714. recovered_cache =
  1715. uint128_wrapper{(recovered_cache.low() >> alpha) | high_to_middle,
  1716. ((middle_low.low() >> alpha) | middle_to_low)};
  1717. if (kb < 0) recovered_cache += 1;
  1718. // Get error.
  1719. int error_idx = (k - float_info<double>::min_k) / 16;
  1720. uint32_t error = (pow10_recovery_errors[error_idx] >>
  1721. ((k - float_info<double>::min_k) % 16) * 2) &
  1722. 0x3;
  1723. // Add the error back.
  1724. FMT_ASSERT(recovered_cache.low() + error >= recovered_cache.low(), "");
  1725. return {recovered_cache.high(), recovered_cache.low() + error};
  1726. #endif
  1727. }
  1728. static carrier_uint compute_mul(carrier_uint u,
  1729. const cache_entry_type& cache) FMT_NOEXCEPT {
  1730. return umul192_upper64(u, cache);
  1731. }
  1732. static uint32_t compute_delta(cache_entry_type const& cache,
  1733. int beta_minus_1) FMT_NOEXCEPT {
  1734. return static_cast<uint32_t>(cache.high() >> (64 - 1 - beta_minus_1));
  1735. }
  1736. static bool compute_mul_parity(carrier_uint two_f,
  1737. const cache_entry_type& cache,
  1738. int beta_minus_1) FMT_NOEXCEPT {
  1739. FMT_ASSERT(beta_minus_1 >= 1, "");
  1740. FMT_ASSERT(beta_minus_1 < 64, "");
  1741. return ((umul192_middle64(two_f, cache) >> (64 - beta_minus_1)) & 1) != 0;
  1742. }
  1743. static carrier_uint compute_left_endpoint_for_shorter_interval_case(
  1744. const cache_entry_type& cache, int beta_minus_1) FMT_NOEXCEPT {
  1745. return (cache.high() -
  1746. (cache.high() >> (float_info<double>::significand_bits + 2))) >>
  1747. (64 - float_info<double>::significand_bits - 1 - beta_minus_1);
  1748. }
  1749. static carrier_uint compute_right_endpoint_for_shorter_interval_case(
  1750. const cache_entry_type& cache, int beta_minus_1) FMT_NOEXCEPT {
  1751. return (cache.high() +
  1752. (cache.high() >> (float_info<double>::significand_bits + 1))) >>
  1753. (64 - float_info<double>::significand_bits - 1 - beta_minus_1);
  1754. }
  1755. static carrier_uint compute_round_up_for_shorter_interval_case(
  1756. const cache_entry_type& cache, int beta_minus_1) FMT_NOEXCEPT {
  1757. return ((cache.high() >>
  1758. (64 - float_info<double>::significand_bits - 2 - beta_minus_1)) +
  1759. 1) /
  1760. 2;
  1761. }
  1762. };
  1763. // Various integer checks
  1764. template <class T>
  1765. bool is_left_endpoint_integer_shorter_interval(int exponent) FMT_NOEXCEPT {
  1766. return exponent >=
  1767. float_info<
  1768. T>::case_shorter_interval_left_endpoint_lower_threshold &&
  1769. exponent <=
  1770. float_info<T>::case_shorter_interval_left_endpoint_upper_threshold;
  1771. }
  1772. template <class T>
  1773. bool is_endpoint_integer(typename float_info<T>::carrier_uint two_f,
  1774. int exponent, int minus_k) FMT_NOEXCEPT {
  1775. if (exponent < float_info<T>::case_fc_pm_half_lower_threshold) return false;
  1776. // For k >= 0.
  1777. if (exponent <= float_info<T>::case_fc_pm_half_upper_threshold) return true;
  1778. // For k < 0.
  1779. if (exponent > float_info<T>::divisibility_check_by_5_threshold) return false;
  1780. return divisible_by_power_of_5(two_f, minus_k);
  1781. }
  1782. template <class T>
  1783. bool is_center_integer(typename float_info<T>::carrier_uint two_f, int exponent,
  1784. int minus_k) FMT_NOEXCEPT {
  1785. // Exponent for 5 is negative.
  1786. if (exponent > float_info<T>::divisibility_check_by_5_threshold) return false;
  1787. if (exponent > float_info<T>::case_fc_upper_threshold)
  1788. return divisible_by_power_of_5(two_f, minus_k);
  1789. // Both exponents are nonnegative.
  1790. if (exponent >= float_info<T>::case_fc_lower_threshold) return true;
  1791. // Exponent for 2 is negative.
  1792. return divisible_by_power_of_2(two_f, minus_k - exponent + 1);
  1793. }
  1794. // Remove trailing zeros from n and return the number of zeros removed (float)
  1795. FMT_INLINE int remove_trailing_zeros(uint32_t& n) FMT_NOEXCEPT {
  1796. #ifdef FMT_BUILTIN_CTZ
  1797. int t = FMT_BUILTIN_CTZ(n);
  1798. #else
  1799. int t = ctz(n);
  1800. #endif
  1801. if (t > float_info<float>::max_trailing_zeros)
  1802. t = float_info<float>::max_trailing_zeros;
  1803. const uint32_t mod_inv1 = 0xcccccccd;
  1804. const uint32_t max_quotient1 = 0x33333333;
  1805. const uint32_t mod_inv2 = 0xc28f5c29;
  1806. const uint32_t max_quotient2 = 0x0a3d70a3;
  1807. int s = 0;
  1808. for (; s < t - 1; s += 2) {
  1809. if (n * mod_inv2 > max_quotient2) break;
  1810. n *= mod_inv2;
  1811. }
  1812. if (s < t && n * mod_inv1 <= max_quotient1) {
  1813. n *= mod_inv1;
  1814. ++s;
  1815. }
  1816. n >>= s;
  1817. return s;
  1818. }
  1819. // Removes trailing zeros and returns the number of zeros removed (double)
  1820. FMT_INLINE int remove_trailing_zeros(uint64_t& n) FMT_NOEXCEPT {
  1821. #ifdef FMT_BUILTIN_CTZLL
  1822. int t = FMT_BUILTIN_CTZLL(n);
  1823. #else
  1824. int t = ctzll(n);
  1825. #endif
  1826. if (t > float_info<double>::max_trailing_zeros)
  1827. t = float_info<double>::max_trailing_zeros;
  1828. // Divide by 10^8 and reduce to 32-bits
  1829. // Since ret_value.significand <= (2^64 - 1) / 1000 < 10^17,
  1830. // both of the quotient and the r should fit in 32-bits
  1831. const uint32_t mod_inv1 = 0xcccccccd;
  1832. const uint32_t max_quotient1 = 0x33333333;
  1833. const uint64_t mod_inv8 = 0xc767074b22e90e21;
  1834. const uint64_t max_quotient8 = 0x00002af31dc46118;
  1835. // If the number is divisible by 1'0000'0000, work with the quotient
  1836. if (t >= 8) {
  1837. auto quotient_candidate = n * mod_inv8;
  1838. if (quotient_candidate <= max_quotient8) {
  1839. auto quotient = static_cast<uint32_t>(quotient_candidate >> 8);
  1840. int s = 8;
  1841. for (; s < t; ++s) {
  1842. if (quotient * mod_inv1 > max_quotient1) break;
  1843. quotient *= mod_inv1;
  1844. }
  1845. quotient >>= (s - 8);
  1846. n = quotient;
  1847. return s;
  1848. }
  1849. }
  1850. // Otherwise, work with the remainder
  1851. auto quotient = static_cast<uint32_t>(n / 100000000);
  1852. auto remainder = static_cast<uint32_t>(n - 100000000 * quotient);
  1853. if (t == 0 || remainder * mod_inv1 > max_quotient1) {
  1854. return 0;
  1855. }
  1856. remainder *= mod_inv1;
  1857. if (t == 1 || remainder * mod_inv1 > max_quotient1) {
  1858. n = (remainder >> 1) + quotient * 10000000ull;
  1859. return 1;
  1860. }
  1861. remainder *= mod_inv1;
  1862. if (t == 2 || remainder * mod_inv1 > max_quotient1) {
  1863. n = (remainder >> 2) + quotient * 1000000ull;
  1864. return 2;
  1865. }
  1866. remainder *= mod_inv1;
  1867. if (t == 3 || remainder * mod_inv1 > max_quotient1) {
  1868. n = (remainder >> 3) + quotient * 100000ull;
  1869. return 3;
  1870. }
  1871. remainder *= mod_inv1;
  1872. if (t == 4 || remainder * mod_inv1 > max_quotient1) {
  1873. n = (remainder >> 4) + quotient * 10000ull;
  1874. return 4;
  1875. }
  1876. remainder *= mod_inv1;
  1877. if (t == 5 || remainder * mod_inv1 > max_quotient1) {
  1878. n = (remainder >> 5) + quotient * 1000ull;
  1879. return 5;
  1880. }
  1881. remainder *= mod_inv1;
  1882. if (t == 6 || remainder * mod_inv1 > max_quotient1) {
  1883. n = (remainder >> 6) + quotient * 100ull;
  1884. return 6;
  1885. }
  1886. remainder *= mod_inv1;
  1887. n = (remainder >> 7) + quotient * 10ull;
  1888. return 7;
  1889. }
  1890. // The main algorithm for shorter interval case
  1891. template <class T>
  1892. FMT_INLINE decimal_fp<T> shorter_interval_case(int exponent) FMT_NOEXCEPT {
  1893. decimal_fp<T> ret_value;
  1894. // Compute k and beta
  1895. const int minus_k = floor_log10_pow2_minus_log10_4_over_3(exponent);
  1896. const int beta_minus_1 = exponent + floor_log2_pow10(-minus_k);
  1897. // Compute xi and zi
  1898. using cache_entry_type = typename cache_accessor<T>::cache_entry_type;
  1899. const cache_entry_type cache = cache_accessor<T>::get_cached_power(-minus_k);
  1900. auto xi = cache_accessor<T>::compute_left_endpoint_for_shorter_interval_case(
  1901. cache, beta_minus_1);
  1902. auto zi = cache_accessor<T>::compute_right_endpoint_for_shorter_interval_case(
  1903. cache, beta_minus_1);
  1904. // If the left endpoint is not an integer, increase it
  1905. if (!is_left_endpoint_integer_shorter_interval<T>(exponent)) ++xi;
  1906. // Try bigger divisor
  1907. ret_value.significand = zi / 10;
  1908. // If succeed, remove trailing zeros if necessary and return
  1909. if (ret_value.significand * 10 >= xi) {
  1910. ret_value.exponent = minus_k + 1;
  1911. ret_value.exponent += remove_trailing_zeros(ret_value.significand);
  1912. return ret_value;
  1913. }
  1914. // Otherwise, compute the round-up of y
  1915. ret_value.significand =
  1916. cache_accessor<T>::compute_round_up_for_shorter_interval_case(
  1917. cache, beta_minus_1);
  1918. ret_value.exponent = minus_k;
  1919. // When tie occurs, choose one of them according to the rule
  1920. if (exponent >= float_info<T>::shorter_interval_tie_lower_threshold &&
  1921. exponent <= float_info<T>::shorter_interval_tie_upper_threshold) {
  1922. ret_value.significand = ret_value.significand % 2 == 0
  1923. ? ret_value.significand
  1924. : ret_value.significand - 1;
  1925. } else if (ret_value.significand < xi) {
  1926. ++ret_value.significand;
  1927. }
  1928. return ret_value;
  1929. }
  1930. template <typename T> decimal_fp<T> to_decimal(T x) FMT_NOEXCEPT {
  1931. // Step 1: integer promotion & Schubfach multiplier calculation.
  1932. using carrier_uint = typename float_info<T>::carrier_uint;
  1933. using cache_entry_type = typename cache_accessor<T>::cache_entry_type;
  1934. auto br = bit_cast<carrier_uint>(x);
  1935. // Extract significand bits and exponent bits.
  1936. const carrier_uint significand_mask =
  1937. (static_cast<carrier_uint>(1) << float_info<T>::significand_bits) - 1;
  1938. carrier_uint significand = (br & significand_mask);
  1939. int exponent = static_cast<int>((br & exponent_mask<T>()) >>
  1940. float_info<T>::significand_bits);
  1941. if (exponent != 0) { // Check if normal.
  1942. exponent += float_info<T>::exponent_bias - float_info<T>::significand_bits;
  1943. // Shorter interval case; proceed like Schubfach.
  1944. if (significand == 0) return shorter_interval_case<T>(exponent);
  1945. significand |=
  1946. (static_cast<carrier_uint>(1) << float_info<T>::significand_bits);
  1947. } else {
  1948. // Subnormal case; the interval is always regular.
  1949. if (significand == 0) return {0, 0};
  1950. exponent = float_info<T>::min_exponent - float_info<T>::significand_bits;
  1951. }
  1952. const bool include_left_endpoint = (significand % 2 == 0);
  1953. const bool include_right_endpoint = include_left_endpoint;
  1954. // Compute k and beta.
  1955. const int minus_k = floor_log10_pow2(exponent) - float_info<T>::kappa;
  1956. const cache_entry_type cache = cache_accessor<T>::get_cached_power(-minus_k);
  1957. const int beta_minus_1 = exponent + floor_log2_pow10(-minus_k);
  1958. // Compute zi and deltai
  1959. // 10^kappa <= deltai < 10^(kappa + 1)
  1960. const uint32_t deltai = cache_accessor<T>::compute_delta(cache, beta_minus_1);
  1961. const carrier_uint two_fc = significand << 1;
  1962. const carrier_uint two_fr = two_fc | 1;
  1963. const carrier_uint zi =
  1964. cache_accessor<T>::compute_mul(two_fr << beta_minus_1, cache);
  1965. // Step 2: Try larger divisor; remove trailing zeros if necessary
  1966. // Using an upper bound on zi, we might be able to optimize the division
  1967. // better than the compiler; we are computing zi / big_divisor here
  1968. decimal_fp<T> ret_value;
  1969. ret_value.significand = divide_by_10_to_kappa_plus_1(zi);
  1970. uint32_t r = static_cast<uint32_t>(zi - float_info<T>::big_divisor *
  1971. ret_value.significand);
  1972. if (r > deltai) {
  1973. goto small_divisor_case_label;
  1974. } else if (r < deltai) {
  1975. // Exclude the right endpoint if necessary
  1976. if (r == 0 && !include_right_endpoint &&
  1977. is_endpoint_integer<T>(two_fr, exponent, minus_k)) {
  1978. --ret_value.significand;
  1979. r = float_info<T>::big_divisor;
  1980. goto small_divisor_case_label;
  1981. }
  1982. } else {
  1983. // r == deltai; compare fractional parts
  1984. // Check conditions in the order different from the paper
  1985. // to take advantage of short-circuiting
  1986. const carrier_uint two_fl = two_fc - 1;
  1987. if ((!include_left_endpoint ||
  1988. !is_endpoint_integer<T>(two_fl, exponent, minus_k)) &&
  1989. !cache_accessor<T>::compute_mul_parity(two_fl, cache, beta_minus_1)) {
  1990. goto small_divisor_case_label;
  1991. }
  1992. }
  1993. ret_value.exponent = minus_k + float_info<T>::kappa + 1;
  1994. // We may need to remove trailing zeros
  1995. ret_value.exponent += remove_trailing_zeros(ret_value.significand);
  1996. return ret_value;
  1997. // Step 3: Find the significand with the smaller divisor
  1998. small_divisor_case_label:
  1999. ret_value.significand *= 10;
  2000. ret_value.exponent = minus_k + float_info<T>::kappa;
  2001. const uint32_t mask = (1u << float_info<T>::kappa) - 1;
  2002. auto dist = r - (deltai / 2) + (float_info<T>::small_divisor / 2);
  2003. // Is dist divisible by 2^kappa?
  2004. if ((dist & mask) == 0) {
  2005. const bool approx_y_parity =
  2006. ((dist ^ (float_info<T>::small_divisor / 2)) & 1) != 0;
  2007. dist >>= float_info<T>::kappa;
  2008. // Is dist divisible by 5^kappa?
  2009. if (check_divisibility_and_divide_by_pow5<float_info<T>::kappa>(dist)) {
  2010. ret_value.significand += dist;
  2011. // Check z^(f) >= epsilon^(f)
  2012. // We have either yi == zi - epsiloni or yi == (zi - epsiloni) - 1,
  2013. // where yi == zi - epsiloni if and only if z^(f) >= epsilon^(f)
  2014. // Since there are only 2 possibilities, we only need to care about the
  2015. // parity. Also, zi and r should have the same parity since the divisor
  2016. // is an even number
  2017. if (cache_accessor<T>::compute_mul_parity(two_fc, cache, beta_minus_1) !=
  2018. approx_y_parity) {
  2019. --ret_value.significand;
  2020. } else {
  2021. // If z^(f) >= epsilon^(f), we might have a tie
  2022. // when z^(f) == epsilon^(f), or equivalently, when y is an integer
  2023. if (is_center_integer<T>(two_fc, exponent, minus_k)) {
  2024. ret_value.significand = ret_value.significand % 2 == 0
  2025. ? ret_value.significand
  2026. : ret_value.significand - 1;
  2027. }
  2028. }
  2029. }
  2030. // Is dist not divisible by 5^kappa?
  2031. else {
  2032. ret_value.significand += dist;
  2033. }
  2034. }
  2035. // Is dist not divisible by 2^kappa?
  2036. else {
  2037. // Since we know dist is small, we might be able to optimize the division
  2038. // better than the compiler; we are computing dist / small_divisor here
  2039. ret_value.significand +=
  2040. small_division_by_pow10<float_info<T>::kappa>(dist);
  2041. }
  2042. return ret_value;
  2043. }
  2044. } // namespace dragonbox
  2045. // Formats a floating-point number using a variation of the Fixed-Precision
  2046. // Positive Floating-Point Printout ((FPP)^2) algorithm by Steele & White:
  2047. // https://fmt.dev/papers/p372-steele.pdf.
  2048. FMT_CONSTEXPR20 inline void format_dragon(fp value, bool is_predecessor_closer,
  2049. int num_digits, buffer<char>& buf,
  2050. int& exp10) {
  2051. bigint numerator; // 2 * R in (FPP)^2.
  2052. bigint denominator; // 2 * S in (FPP)^2.
  2053. // lower and upper are differences between value and corresponding boundaries.
  2054. bigint lower; // (M^- in (FPP)^2).
  2055. bigint upper_store; // upper's value if different from lower.
  2056. bigint* upper = nullptr; // (M^+ in (FPP)^2).
  2057. // Shift numerator and denominator by an extra bit or two (if lower boundary
  2058. // is closer) to make lower and upper integers. This eliminates multiplication
  2059. // by 2 during later computations.
  2060. int shift = is_predecessor_closer ? 2 : 1;
  2061. uint64_t significand = value.f << shift;
  2062. if (value.e >= 0) {
  2063. numerator.assign(significand);
  2064. numerator <<= value.e;
  2065. lower.assign(1);
  2066. lower <<= value.e;
  2067. if (shift != 1) {
  2068. upper_store.assign(1);
  2069. upper_store <<= value.e + 1;
  2070. upper = &upper_store;
  2071. }
  2072. denominator.assign_pow10(exp10);
  2073. denominator <<= shift;
  2074. } else if (exp10 < 0) {
  2075. numerator.assign_pow10(-exp10);
  2076. lower.assign(numerator);
  2077. if (shift != 1) {
  2078. upper_store.assign(numerator);
  2079. upper_store <<= 1;
  2080. upper = &upper_store;
  2081. }
  2082. numerator *= significand;
  2083. denominator.assign(1);
  2084. denominator <<= shift - value.e;
  2085. } else {
  2086. numerator.assign(significand);
  2087. denominator.assign_pow10(exp10);
  2088. denominator <<= shift - value.e;
  2089. lower.assign(1);
  2090. if (shift != 1) {
  2091. upper_store.assign(1ULL << 1);
  2092. upper = &upper_store;
  2093. }
  2094. }
  2095. // Invariant: value == (numerator / denominator) * pow(10, exp10).
  2096. if (num_digits < 0) {
  2097. // Generate the shortest representation.
  2098. if (!upper) upper = &lower;
  2099. bool even = (value.f & 1) == 0;
  2100. num_digits = 0;
  2101. char* data = buf.data();
  2102. for (;;) {
  2103. int digit = numerator.divmod_assign(denominator);
  2104. bool low = compare(numerator, lower) - even < 0; // numerator <[=] lower.
  2105. // numerator + upper >[=] pow10:
  2106. bool high = add_compare(numerator, *upper, denominator) + even > 0;
  2107. data[num_digits++] = static_cast<char>('0' + digit);
  2108. if (low || high) {
  2109. if (!low) {
  2110. ++data[num_digits - 1];
  2111. } else if (high) {
  2112. int result = add_compare(numerator, numerator, denominator);
  2113. // Round half to even.
  2114. if (result > 0 || (result == 0 && (digit % 2) != 0))
  2115. ++data[num_digits - 1];
  2116. }
  2117. buf.try_resize(to_unsigned(num_digits));
  2118. exp10 -= num_digits - 1;
  2119. return;
  2120. }
  2121. numerator *= 10;
  2122. lower *= 10;
  2123. if (upper != &lower) *upper *= 10;
  2124. }
  2125. }
  2126. // Generate the given number of digits.
  2127. exp10 -= num_digits - 1;
  2128. if (num_digits == 0) {
  2129. denominator *= 10;
  2130. auto digit = add_compare(numerator, numerator, denominator) > 0 ? '1' : '0';
  2131. buf.push_back(digit);
  2132. return;
  2133. }
  2134. buf.try_resize(to_unsigned(num_digits));
  2135. for (int i = 0; i < num_digits - 1; ++i) {
  2136. int digit = numerator.divmod_assign(denominator);
  2137. buf[i] = static_cast<char>('0' + digit);
  2138. numerator *= 10;
  2139. }
  2140. int digit = numerator.divmod_assign(denominator);
  2141. auto result = add_compare(numerator, numerator, denominator);
  2142. if (result > 0 || (result == 0 && (digit % 2) != 0)) {
  2143. if (digit == 9) {
  2144. const auto overflow = '0' + 10;
  2145. buf[num_digits - 1] = overflow;
  2146. // Propagate the carry.
  2147. for (int i = num_digits - 1; i > 0 && buf[i] == overflow; --i) {
  2148. buf[i] = '0';
  2149. ++buf[i - 1];
  2150. }
  2151. if (buf[0] == overflow) {
  2152. buf[0] = '1';
  2153. ++exp10;
  2154. }
  2155. return;
  2156. }
  2157. ++digit;
  2158. }
  2159. buf[num_digits - 1] = static_cast<char>('0' + digit);
  2160. }
  2161. template <typename Float>
  2162. FMT_HEADER_ONLY_CONSTEXPR20 int format_float(Float value, int precision,
  2163. float_specs specs,
  2164. buffer<char>& buf) {
  2165. // float is passed as double to reduce the number of instantiations.
  2166. static_assert(!std::is_same<Float, float>::value, "");
  2167. FMT_ASSERT(value >= 0, "value is negative");
  2168. const bool fixed = specs.format == float_format::fixed;
  2169. if (value <= 0) { // <= instead of == to silence a warning.
  2170. if (precision <= 0 || !fixed) {
  2171. buf.push_back('0');
  2172. return 0;
  2173. }
  2174. buf.try_resize(to_unsigned(precision));
  2175. fill_n(buf.data(), precision, '0');
  2176. return -precision;
  2177. }
  2178. if (specs.fallback) return snprintf_float(value, precision, specs, buf);
  2179. if (!is_constant_evaluated() && precision < 0) {
  2180. // Use Dragonbox for the shortest format.
  2181. if (specs.binary32) {
  2182. auto dec = dragonbox::to_decimal(static_cast<float>(value));
  2183. write<char>(buffer_appender<char>(buf), dec.significand);
  2184. return dec.exponent;
  2185. }
  2186. auto dec = dragonbox::to_decimal(static_cast<double>(value));
  2187. write<char>(buffer_appender<char>(buf), dec.significand);
  2188. return dec.exponent;
  2189. }
  2190. int exp = 0;
  2191. bool use_dragon = true;
  2192. if (is_fast_float<Float>()) {
  2193. // Use Grisu + Dragon4 for the given precision:
  2194. // https://www.cs.tufts.edu/~nr/cs257/archive/florian-loitsch/printf.pdf.
  2195. const int min_exp = -60; // alpha in Grisu.
  2196. int cached_exp10 = 0; // K in Grisu.
  2197. fp normalized = normalize(fp(value));
  2198. const auto cached_pow = get_cached_power(
  2199. min_exp - (normalized.e + fp::num_significand_bits), cached_exp10);
  2200. normalized = normalized * cached_pow;
  2201. gen_digits_handler handler{buf.data(), 0, precision, -cached_exp10, fixed};
  2202. if (grisu_gen_digits(normalized, 1, exp, handler) != digits::error &&
  2203. !is_constant_evaluated()) {
  2204. exp += handler.exp10;
  2205. buf.try_resize(to_unsigned(handler.size));
  2206. use_dragon = false;
  2207. } else {
  2208. exp += handler.size - cached_exp10 - 1;
  2209. precision = handler.precision;
  2210. }
  2211. }
  2212. if (use_dragon) {
  2213. auto f = fp();
  2214. bool is_predecessor_closer =
  2215. specs.binary32 ? f.assign(static_cast<float>(value)) : f.assign(value);
  2216. // Limit precision to the maximum possible number of significant digits in
  2217. // an IEEE754 double because we don't need to generate zeros.
  2218. const int max_double_digits = 767;
  2219. if (precision > max_double_digits) precision = max_double_digits;
  2220. format_dragon(f, is_predecessor_closer, precision, buf, exp);
  2221. }
  2222. if (!fixed && !specs.showpoint) {
  2223. // Remove trailing zeros.
  2224. auto num_digits = buf.size();
  2225. while (num_digits > 0 && buf[num_digits - 1] == '0') {
  2226. --num_digits;
  2227. ++exp;
  2228. }
  2229. buf.try_resize(num_digits);
  2230. }
  2231. return exp;
  2232. }
  2233. template <typename T>
  2234. int snprintf_float(T value, int precision, float_specs specs,
  2235. buffer<char>& buf) {
  2236. // Buffer capacity must be non-zero, otherwise MSVC's vsnprintf_s will fail.
  2237. FMT_ASSERT(buf.capacity() > buf.size(), "empty buffer");
  2238. static_assert(!std::is_same<T, float>::value, "");
  2239. // Subtract 1 to account for the difference in precision since we use %e for
  2240. // both general and exponent format.
  2241. if (specs.format == float_format::general ||
  2242. specs.format == float_format::exp)
  2243. precision = (precision >= 0 ? precision : 6) - 1;
  2244. // Build the format string.
  2245. enum { max_format_size = 7 }; // The longest format is "%#.*Le".
  2246. char format[max_format_size];
  2247. char* format_ptr = format;
  2248. *format_ptr++ = '%';
  2249. if (specs.showpoint && specs.format == float_format::hex) *format_ptr++ = '#';
  2250. if (precision >= 0) {
  2251. *format_ptr++ = '.';
  2252. *format_ptr++ = '*';
  2253. }
  2254. if (std::is_same<T, long double>()) *format_ptr++ = 'L';
  2255. *format_ptr++ = specs.format != float_format::hex
  2256. ? (specs.format == float_format::fixed ? 'f' : 'e')
  2257. : (specs.upper ? 'A' : 'a');
  2258. *format_ptr = '\0';
  2259. // Format using snprintf.
  2260. auto offset = buf.size();
  2261. for (;;) {
  2262. auto begin = buf.data() + offset;
  2263. auto capacity = buf.capacity() - offset;
  2264. #ifdef FMT_FUZZ
  2265. if (precision > 100000)
  2266. throw std::runtime_error(
  2267. "fuzz mode - avoid large allocation inside snprintf");
  2268. #endif
  2269. // Suppress the warning about a nonliteral format string.
  2270. // Cannot use auto because of a bug in MinGW (#1532).
  2271. int (*snprintf_ptr)(char*, size_t, const char*, ...) = FMT_SNPRINTF;
  2272. int result = precision >= 0
  2273. ? snprintf_ptr(begin, capacity, format, precision, value)
  2274. : snprintf_ptr(begin, capacity, format, value);
  2275. if (result < 0) {
  2276. // The buffer will grow exponentially.
  2277. buf.try_reserve(buf.capacity() + 1);
  2278. continue;
  2279. }
  2280. auto size = to_unsigned(result);
  2281. // Size equal to capacity means that the last character was truncated.
  2282. if (size >= capacity) {
  2283. buf.try_reserve(size + offset + 1); // Add 1 for the terminating '\0'.
  2284. continue;
  2285. }
  2286. auto is_digit = [](char c) { return c >= '0' && c <= '9'; };
  2287. if (specs.format == float_format::fixed) {
  2288. if (precision == 0) {
  2289. buf.try_resize(size);
  2290. return 0;
  2291. }
  2292. // Find and remove the decimal point.
  2293. auto end = begin + size, p = end;
  2294. do {
  2295. --p;
  2296. } while (is_digit(*p));
  2297. int fraction_size = static_cast<int>(end - p - 1);
  2298. std::memmove(p, p + 1, to_unsigned(fraction_size));
  2299. buf.try_resize(size - 1);
  2300. return -fraction_size;
  2301. }
  2302. if (specs.format == float_format::hex) {
  2303. buf.try_resize(size + offset);
  2304. return 0;
  2305. }
  2306. // Find and parse the exponent.
  2307. auto end = begin + size, exp_pos = end;
  2308. do {
  2309. --exp_pos;
  2310. } while (*exp_pos != 'e');
  2311. char sign = exp_pos[1];
  2312. FMT_ASSERT(sign == '+' || sign == '-', "");
  2313. int exp = 0;
  2314. auto p = exp_pos + 2; // Skip 'e' and sign.
  2315. do {
  2316. FMT_ASSERT(is_digit(*p), "");
  2317. exp = exp * 10 + (*p++ - '0');
  2318. } while (p != end);
  2319. if (sign == '-') exp = -exp;
  2320. int fraction_size = 0;
  2321. if (exp_pos != begin + 1) {
  2322. // Remove trailing zeros.
  2323. auto fraction_end = exp_pos - 1;
  2324. while (*fraction_end == '0') --fraction_end;
  2325. // Move the fractional part left to get rid of the decimal point.
  2326. fraction_size = static_cast<int>(fraction_end - begin - 1);
  2327. std::memmove(begin + 1, begin + 2, to_unsigned(fraction_size));
  2328. }
  2329. buf.try_resize(to_unsigned(fraction_size) + offset + 1);
  2330. return exp - fraction_size;
  2331. }
  2332. }
  2333. } // namespace detail
  2334. template <> struct formatter<detail::bigint> {
  2335. FMT_CONSTEXPR format_parse_context::iterator parse(
  2336. format_parse_context& ctx) {
  2337. return ctx.begin();
  2338. }
  2339. format_context::iterator format(const detail::bigint& n,
  2340. format_context& ctx) {
  2341. auto out = ctx.out();
  2342. bool first = true;
  2343. for (auto i = n.bigits_.size(); i > 0; --i) {
  2344. auto value = n.bigits_[i - 1u];
  2345. if (first) {
  2346. out = format_to(out, FMT_STRING("{:x}"), value);
  2347. first = false;
  2348. continue;
  2349. }
  2350. out = format_to(out, FMT_STRING("{:08x}"), value);
  2351. }
  2352. if (n.exp_ > 0)
  2353. out = format_to(out, FMT_STRING("p{}"),
  2354. n.exp_ * detail::bigint::bigit_bits);
  2355. return out;
  2356. }
  2357. };
  2358. FMT_FUNC detail::utf8_to_utf16::utf8_to_utf16(string_view s) {
  2359. for_each_codepoint(s, [this](uint32_t cp, string_view) {
  2360. if (cp == invalid_code_point) FMT_THROW(std::runtime_error("invalid utf8"));
  2361. if (cp <= 0xFFFF) {
  2362. buffer_.push_back(static_cast<wchar_t>(cp));
  2363. } else {
  2364. cp -= 0x10000;
  2365. buffer_.push_back(static_cast<wchar_t>(0xD800 + (cp >> 10)));
  2366. buffer_.push_back(static_cast<wchar_t>(0xDC00 + (cp & 0x3FF)));
  2367. }
  2368. return true;
  2369. });
  2370. buffer_.push_back(0);
  2371. }
  2372. FMT_FUNC void format_system_error(detail::buffer<char>& out, int error_code,
  2373. const char* message) FMT_NOEXCEPT {
  2374. FMT_TRY {
  2375. auto ec = std::error_code(error_code, std::generic_category());
  2376. write(std::back_inserter(out), std::system_error(ec, message).what());
  2377. return;
  2378. }
  2379. FMT_CATCH(...) {}
  2380. format_error_code(out, error_code, message);
  2381. }
  2382. FMT_FUNC void report_system_error(int error_code,
  2383. const char* message) FMT_NOEXCEPT {
  2384. report_error(format_system_error, error_code, message);
  2385. }
  2386. // DEPRECATED!
  2387. // This function is defined here and not inline for ABI compatiblity.
  2388. FMT_FUNC void detail::error_handler::on_error(const char* message) {
  2389. throw_format_error(message);
  2390. }
  2391. FMT_FUNC std::string vformat(string_view fmt, format_args args) {
  2392. // Don't optimize the "{}" case to keep the binary size small and because it
  2393. // can be better optimized in fmt::format anyway.
  2394. auto buffer = memory_buffer();
  2395. detail::vformat_to(buffer, fmt, args);
  2396. return to_string(buffer);
  2397. }
  2398. #ifdef _WIN32
  2399. namespace detail {
  2400. using dword = conditional_t<sizeof(long) == 4, unsigned long, unsigned>;
  2401. extern "C" __declspec(dllimport) int __stdcall WriteConsoleW( //
  2402. void*, const void*, dword, dword*, void*);
  2403. } // namespace detail
  2404. #endif
  2405. namespace detail {
  2406. FMT_FUNC void print(std::FILE* f, string_view text) {
  2407. #ifdef _WIN32
  2408. auto fd = _fileno(f);
  2409. if (_isatty(fd)) {
  2410. detail::utf8_to_utf16 u16(string_view(text.data(), text.size()));
  2411. auto written = detail::dword();
  2412. if (detail::WriteConsoleW(reinterpret_cast<void*>(_get_osfhandle(fd)),
  2413. u16.c_str(), static_cast<uint32_t>(u16.size()),
  2414. &written, nullptr)) {
  2415. return;
  2416. }
  2417. // Fallback to fwrite on failure. It can happen if the output has been
  2418. // redirected to NUL.
  2419. }
  2420. #endif
  2421. detail::fwrite_fully(text.data(), 1, text.size(), f);
  2422. }
  2423. } // namespace detail
  2424. FMT_FUNC void vprint(std::FILE* f, string_view format_str, format_args args) {
  2425. memory_buffer buffer;
  2426. detail::vformat_to(buffer, format_str, args);
  2427. detail::print(f, {buffer.data(), buffer.size()});
  2428. }
  2429. #ifdef _WIN32
  2430. // Print assuming legacy (non-Unicode) encoding.
  2431. FMT_FUNC void detail::vprint_mojibake(std::FILE* f, string_view format_str,
  2432. format_args args) {
  2433. memory_buffer buffer;
  2434. detail::vformat_to(buffer, format_str,
  2435. basic_format_args<buffer_context<char>>(args));
  2436. fwrite_fully(buffer.data(), 1, buffer.size(), f);
  2437. }
  2438. #endif
  2439. FMT_FUNC void vprint(string_view format_str, format_args args) {
  2440. vprint(stdout, format_str, args);
  2441. }
  2442. FMT_END_NAMESPACE
  2443. #endif // FMT_FORMAT_INL_H_