123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261 |
- #encoding=utf-8
- import time
- import os
- import sys
- import pandas as pd
- sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
- import time
- import glob
- import numpy as np
- np.random.seed(42)
- from datetime import datetime
- import json
- from src.utils import get_meshgrid, get_world_points, get_camera_points, get_screen_points, write_point_cloud, get_white_mask, get_meshgrid_contour, post_process, find_notch
- from src.phase import extract_phase, unwrap_phase
- from src.recons import reconstruction_cumsum
- from src.pcl_postproc import smooth_pcl, align2ref
- import matplotlib.pyplot as plt
- from src.calibration import calibrate_world, calibrate_screen, map_screen_to_world
- import argparse
- from src.vis import plot_coords
- import cv2
- from src.eval import get_eval_result
- import pickle
- from collections import defaultdict
- def pmdstart(config_path, img_folder):
- start_time = time.time()
- print(f"config_path: {config_path}")
- #time.sleep(15)
- main(config_path, img_folder)
- print(f"img_folder: {img_folder}")
- print('test pass')
- end_time = time.time()
- print(f"Time taken: {end_time - start_time} seconds")
- return True
- def main(config_path, img_folder):
- current_dir = os.path.dirname(os.path.abspath(__file__))
- os.chdir(current_dir)
- cfg = json.load(open(config_path, 'r'))
- n_cam = 4
- num_freq = cfg['num_freq']
- save_path = 'debug'
- debug = False
- grid_spacing = cfg['grid_spacing']
- num_freq = cfg['num_freq']
- smooth = True
- align = True
- denoise = True
- cammera_img_path = 'D:\\data\\four_cam\\calibrate\\calibrate-1008'
- screen_img_path = 'D:\\data\\four_cam\\calibrate\\cam3-screen-1008'
- #cammera_img_path = 'D:\\data\\four_cam\\calibrate\\calibration_0913'
- #screen_img_path = 'D:\\data\\four_cam\\calibrate\\screen0920'
- print(f"开始执行时间: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
- print("\n1. 相机标定")
- preprocess_start = time.time()
- cam_para_path = os.path.join('config', cfg['cam_params'])
- if os.path.exists(cam_para_path):
- #if False:
- with open(cam_para_path, 'rb') as pkl_file:
- cam_params = pickle.load(pkl_file)
- else:
- cam_params = []
- camera_subdir = [item for item in os.listdir(cammera_img_path) if os.path.isdir(os.path.join(cammera_img_path, item))]
- camera_subdir.sort()
- assert len(camera_subdir) == 4, f"found {len(camera_subdir)} cameras, should be 4"
- for i in range(n_cam):
- cam_img_path = glob.glob(os.path.join(cammera_img_path, camera_subdir[i], "*.bmp"))
- cam_img_path.sort()
- print('cam_img_path = ', cam_img_path)
- cam_param_raw = calibrate_world(cam_img_path, i, cfg['world_chessboard_size'], cfg['world_square_size'], debug=0)
- cam_params.append(cam_param_raw)
- with open(cam_para_path, 'wb') as pkl_file:
- pickle.dump(cam_params, pkl_file)
-
- print("\n2. 屏幕标定")
- screen_cal_start = time.time()
- screen_img_path = glob.glob(os.path.join(screen_img_path, "*.bmp"))
- screen_para_path = os.path.join('config', cfg['screen_params'])
- if os.path.exists(screen_para_path):
- #if False:
- with open(screen_para_path, 'rb') as pkl_file:
- screen_params = pickle.load(pkl_file)[0]
- else:
- screen_params = calibrate_screen(screen_img_path, cam_params[3]['camera_matrix'], cam_params[3]['distortion_coefficients'], cfg['screen_chessboard_size'], cfg['screen_square_size'], debug=0)
- with open(screen_para_path, 'wb') as pkl_file:
- pickle.dump([screen_params], pkl_file)
-
- screen_to_world = map_screen_to_world(screen_params, cam_params[3])
- screen_cal_end = time.time()
- print(f" 完成时间: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
- print(f" 耗时: {screen_cal_end - screen_cal_start:.2f} 秒")
-
- print("\n3. 相位提取,相位展开")
- phase_start = time.time()
- x_uns, y_uns = [], []
- binary_masks = []
- for cam_id in range(n_cam):
- print('cam_id = ', cam_id)
- white_path = os.path.join(img_folder, f'{cam_id}_frame_24.bmp')
- binary = get_white_mask(white_path, bin_thresh=12, debug=0)
- binary_masks.append(binary)
- phases = extract_phase(img_folder, cam_id, binary, cam_params[cam_id]['camera_matrix'], cam_params[cam_id]['distortion_coefficients'], num_freq=num_freq)
- x_un, y_un = unwrap_phase(phases, save_path, num_freq, debug=0)
- x_uns.append(x_un)
- y_uns.append(y_un)
- phase_end = time.time()
- print(f" 完成时间: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
- print(f" 耗时: {phase_end - phase_start:.2f} 秒")
-
- print("\n4. 获得不同坐标系下点的位置")
- get_point_start = time.time()
- total_cloud_point = np.empty((0, 3))
- total_boundary_point = np.empty((0, 3))
- for i in range(n_cam):
- print('cam_id = ', i)
- contours_point = get_meshgrid_contour(binary_masks[i], save_path, debug=False)
- world_points, world_points_boundary, world_points_boundary_3 = get_world_points(contours_point, cam_params[i], i, grid_spacing, cfg['d'], erosion_pixels=15, debug=0)
- camera_points, u_p, v_p = get_camera_points(world_points, cam_params[i], save_path, i, debug=0)
- point_data = {'x_w': world_points[:, 0], 'y_w': world_points[:, 1], 'z_w': world_points[:, 2],
- 'x_c': camera_points[:, 0], 'y_c': camera_points[:, 1], 'z_c': camera_points[:, 2],
- 'u_p': u_p, 'v_p': v_p}
- screen_points = get_screen_points(point_data, x_uns[i], y_uns[i], screen_params, screen_to_world, cfg, save_path, i, debug=debug)
- #plot_coords(world_points, camera_points, screen_points)
- z_raw, aligned, smoothed, denoised = reconstruction_cumsum(world_points, camera_points, screen_points, save_path, i, debug=0, smooth=smooth, align=align, denoise=denoise)
-
- z_raw_xy = np.round(z_raw[:, :2]).astype(int)
-
- # 创建布尔掩码,初始为 True
- mask = np.ones(len(z_raw_xy), dtype=bool)
- # 遍历每个边界点,标记它们在 aligned 中的位置
- for boundary_point in world_points_boundary:
- # 标记与当前边界点相同 xy 坐标的行
- mask &= ~np.all(z_raw_xy == boundary_point[:2], axis=1)
-
- # 使用掩码过滤出非边界点
- non_boundary_points = z_raw[mask]
- non_boundary_aligned, rotation_matrix = align2ref(non_boundary_points)
-
- # 创建布尔掩码,初始为 True
- mask = np.ones(len(z_raw_xy), dtype=bool)
- # 遍历每个边界点,标记它们在 aligned 中的位置
- for boundary_point in world_points_boundary_3:
- # 标记与当前边界点相同 xy 坐标的行
- mask &= ~np.all(z_raw_xy == boundary_point[:2], axis=1)
-
- # 使用掩码过滤出非边界点
- non_boundary_points = z_raw[mask]
- z_raw_aligned = non_boundary_points @ rotation_matrix.T
- #z_raw_aligned[:,2] = z_raw_aligned[:,2] - np.mean(z_raw_aligned[:, 2])
- #non_boundary_points = smoothed
- write_point_cloud(os.path.join(img_folder, str(i) + '_cloudpoint.txt'), np.round(z_raw_aligned[:, 0]), np.round(z_raw_aligned[:, 1]), 1000*z_raw_aligned[:, 2])
- total_cloud_point = np.vstack([total_cloud_point, np.column_stack((z_raw_aligned[:, 0], z_raw_aligned[:, 1], 1000*z_raw_aligned[:, 2]))])
-
- if debug:
- fig = plt.figure()
- ax = fig.add_subplot(111, projection='3d')
- # 提取 x, y, z 坐标
- x_vals = total_cloud_point[:, 0]
- y_vals = total_cloud_point[:, 1]
- z_vals = total_cloud_point[:, 2]
- # 绘制3D点云
- ax.scatter(x_vals, y_vals, z_vals, c=z_vals, cmap='viridis', marker='o')
- # 设置轴标签和标题
- ax.set_xlabel('X (mm)')
- ax.set_ylabel('Y (mm)')
- ax.set_zlabel('Z (mm)')
- ax.set_title('3D Point Cloud Visualization')
- plt.show()
- # fig = plt.figure()
- # ax = fig.add_subplot(111, projection='3d')
- # smoothed_total = smooth_pcl(total_cloud_point, 3)
- # # 提取 x, y, z 坐标
- # x_vals = smoothed_total[:, 0]
- # y_vals = smoothed_total[:, 1]
- # z_vals = smoothed_total[:, 2]
- # # 绘制3D点云
- # ax.scatter(x_vals, y_vals, z_vals, c=z_vals, cmap='viridis', marker='o')
- # # 设置轴标签和标题
- # ax.set_xlabel('X (mm)')
- # ax.set_ylabel('Y (mm)')
- # ax.set_zlabel('Z (mm)')
- # ax.set_title('smoothed 3D Point Cloud Visualization')
-
- get_point_end = time.time()
- print(f" 完成时间: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
- print(f" 耗时: {get_point_end - get_point_start:.2f} 秒")
-
- print("\n5. 后处理")
- post_process_start = time.time()
- total_cloud_point[:,0] = np.round(total_cloud_point[:,0])
- total_cloud_point[:,1] = np.round(total_cloud_point[:,1])
- fitted_points = post_process(total_cloud_point, debug=0)
- align_fitted, _= align2ref(fitted_points)
-
- write_point_cloud(os.path.join(img_folder, 'cloudpoint.txt'), np.round(align_fitted[:, 0]-np.mean(align_fitted[:, 0])), np.round(align_fitted[:, 1]-np.mean(align_fitted[:, 1])), align_fitted[:,2]-np.min(align_fitted[:,2]))
- if debug:
- fig = plt.figure()
- ax = fig.add_subplot(111, projection='3d')
- # 提取 x, y, z 坐标
- x_vals = np.round(fitted_points[:, 0]-np.mean(fitted_points[:, 0]))
- y_vals = np.round(fitted_points[:, 1]-np.mean(fitted_points[:, 1]))
- z_vals = align_fitted[:,2]-np.min(align_fitted[:,2])
- # 绘制3D点云
- ax.scatter(x_vals, y_vals, z_vals, c=z_vals, cmap='viridis', marker='o')
- # 设置轴标签和标题
- ax.set_xlabel('X (mm)')
- ax.set_ylabel('Y (mm)')
- ax.set_zlabel('Z (mm)')
- ax.set_title('3D Point Cloud Visualization')
- plt.show()
-
- post_process_end = time.time()
- print(f" 完成时间: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
- print(f" 耗时: {post_process_end - post_process_start:.2f} 秒")
- print("\n6. 评估")
- eval_start = time.time()
- point_cloud_path = os.path.join(img_folder, 'cloudpoint.txt')
- json_path = os.path.join(img_folder, 'result.json')
- theta_notch = 0
- get_eval_result(point_cloud_path, json_path, theta_notch, 0)
- eval_end = time.time()
- print(f" 完成时间: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
- print(f" 耗时: {eval_end - eval_start:.2f} 秒")
- return True
- if __name__ == '__main__':
- config_path = 'config\\cfg_3freq_wafer.json'
- img_folder = 'D:\\data\\four_cam\\1008_storage\\20241009163255262'
- json_path = os.path.join(img_folder, 'result.json')
- pmdstart(config_path, img_folder)
- point_cloud_path = os.path.join(img_folder, 'cloudpoint.txt')
- theta_notch = 0
- #get_eval_result(point_cloud_path, json_path, theta_notch, 0)
-
|