123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182 |
- #encoding=utf-8
- import time
- import os
- import sys
- sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
- import time
- import glob
- import numpy as np
- np.random.seed(42)
- from datetime import datetime
- import json
- from src.utils import get_meshgrid, get_world_points, get_camera_points, get_screen_points, write_point_cloud, get_white_mask, get_meshgrid_contour, post_process
- from src.phase import extract_phase, unwrap_phase
- from src.recons import reconstruction_cumsum
- import matplotlib.pyplot as plt
- from src.calibration import calibrate_world, calibrate_screen, map_screen_to_world
- import argparse
- from src.vis import plot_coords
- import cv2
- from src.eval import get_eval_result, find_notch
- import pickle
- def pmdstart(config_path, img_folder):
- start_time = time.time()
- print(f"config_path: {config_path}")
- #time.sleep(15)
- main(config_path, img_folder)
- print(f"img_folder: {img_folder}")
- print('test pass')
- end_time = time.time()
- print(f"Time taken: {end_time - start_time} seconds")
- return True
- def main(config_path, img_folder):
- cfg = json.load(open(config_path, 'r'))
- n_cam = 4
- num_freq = cfg['num_freq']
- save_path = 'debug'
- debug = False
- grid_spacing = cfg['grid_spacing']
- num_freq = cfg['num_freq']
- smooth = True
- align = True
- denoise = True
- cammera_img_path = 'D:\\data\\four_cam\\calibrate\\calibration_0913'
- screen_img_path = 'D:\\data\\four_cam\\calibrate\\screen0920'
- print(f"开始执行时间: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
- print("\n1. 相机标定")
- preprocess_start = time.time()
- cam_para_path = os.path.join('config', cfg['cam_params'])
- if os.path.exists(cam_para_path):
- #if False:
- with open(cam_para_path, 'rb') as pkl_file:
- cam_params = pickle.load(pkl_file)
- else:
- cam_params = []
- camera_subdir = [item for item in os.listdir(cammera_img_path) if os.path.isdir(os.path.join(cammera_img_path, item))]
- camera_subdir.sort()
- assert len(camera_subdir) == 4, f"found {len(camera_subdir)} cameras, should be 4"
- for i in range(n_cam):
- cam_img_path = glob.glob(os.path.join(cammera_img_path, camera_subdir[i], "*.bmp"))
- cam_img_path.sort()
- cam_param_raw = calibrate_world(cam_img_path, i, cfg['world_chessboard_size'], cfg['world_square_size'], debug=debug)
- cam_params.append(cam_param_raw)
- with open(cam_para_path, 'wb') as pkl_file:
- pickle.dump(cam_params, pkl_file)
-
-
- screen_img_path = glob.glob(os.path.join(screen_img_path, "*.bmp"))
- screen_para_path = os.path.join('config', cfg['screen_params'])
- if os.path.exists(screen_para_path):
- #if False:
- with open(screen_para_path, 'rb') as pkl_file:
- screen_params = pickle.load(pkl_file)[0]
- else:
- screen_params = calibrate_screen(screen_img_path, cam_params[0]['camera_matrix'], cam_params[0]['distortion_coefficients'], cfg['screen_chessboard_size'], cfg['screen_square_size'], debug=True)
- with open(screen_para_path, 'wb') as pkl_file:
- pickle.dump([screen_params], pkl_file)
- preprocess_end = time.time()
- print(f" 完成时间: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
- print(f" 耗时: {preprocess_end - preprocess_start:.2f} 秒")
- # import pdb; pdb.set_trace()
-
- print("\n2. 屏幕标定")
- screen_cal_start = time.time()
-
- screen_to_world = map_screen_to_world(screen_params, cam_params[0])
- screen_cal_end = time.time()
- print(f" 完成时间: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
- print(f" 耗时: {screen_cal_end - screen_cal_start:.2f} 秒")
-
- print("\n3. 相位提取,相位展开")
- phase_start = time.time()
- x_uns, y_uns = [], []
- binary_masks = []
- for cam_id in range(n_cam):
- print('cam_id = ', cam_id)
- white_path = os.path.join(img_folder, f'{cam_id}_frame_24.bmp')
- binary = get_white_mask(white_path)
- binary_masks.append(binary)
- phases = extract_phase(img_folder, cam_id, binary, cam_params[cam_id]['camera_matrix'], cam_params[cam_id]['distortion_coefficients'], num_freq=num_freq)
- x_un, y_un = unwrap_phase(phases, save_path, num_freq, debug=False)
- x_uns.append(x_un)
- y_uns.append(y_un)
-
- phase_end = time.time()
- print(f" 完成时间: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
- print(f" 耗时: {phase_end - phase_start:.2f} 秒")
-
- print("\n4. 获得不同坐标系下点的位置")
- get_point_start = time.time()
- total_cloud_point = np.empty((0, 3))
- for i in range(n_cam):
- contours_point = get_meshgrid_contour(binary_masks[i], grid_spacing, save_path, debug=False)
- world_points = get_world_points(contours_point, cam_params[i], i, grid_spacing, cfg['d'], save_path, debug=debug)
- camera_points, u_p, v_p = get_camera_points(world_points, cam_params[i], save_path, i, debug=debug)
- point_data = {'x_w': world_points[:, 0], 'y_w': world_points[:, 1], 'z_w': world_points[:, 2],
- 'x_c': camera_points[:, 0], 'y_c': camera_points[:, 1], 'z_c': camera_points[:, 2],
- 'u_p': u_p, 'v_p': v_p}
- screen_points = get_screen_points(point_data, x_uns[i], y_uns[i], screen_params, screen_to_world, cfg, save_path, i, debug=debug)
- #plot_coords(world_points, camera_points, screen_points)
- z, smoothed, aligned, denoised = reconstruction_cumsum(world_points, camera_points, screen_points, save_path, i, debug=False, smooth=smooth, align=align, denoise=denoise)
- write_point_cloud(os.path.join(img_folder, str(i) + '_cloudpoint.txt'), world_points[:, 0], world_points[:, 1], 1000 * z)
- total_cloud_point = np.vstack([total_cloud_point, np.column_stack((world_points[:, 0], world_points[:, 1], 1000 * z))])
-
- if 1:
- fig = plt.figure()
- ax = fig.add_subplot(111, projection='3d')
- # 提取 x, y, z 坐标
- x_vals = total_cloud_point[:, 0]
- y_vals = total_cloud_point[:, 1]
- z_vals = total_cloud_point[:, 2]
- # 绘制3D点云
- ax.scatter(x_vals, y_vals, z_vals, c=z_vals, cmap='viridis', marker='o')
- # 设置轴标签和标题
- ax.set_xlabel('X (mm)')
- ax.set_ylabel('Y (mm)')
- ax.set_zlabel('Z (mm)')
- ax.set_title('3D Point Cloud Visualization')
- plt.show()
- get_point_end = time.time()
- print(f" 完成时间: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
- print(f" 耗时: {get_point_end - get_point_start:.2f} 秒")
-
- print("\n5. 后处理")
- post_process_start = time.time()
- #total_cloud_point = post_process(img_folder, debug=True)
- #write_point_cloud(os.path.join(img_folder, 'cloudpoint.txt'), total_cloud_point[:, 0], total_cloud_point[:, 1], total_cloud_point[:,2])
- post_process_end = time.time()
- print(f" 完成时间: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
- print(f" 耗时: {post_process_end - post_process_start:.2f} 秒")
- print("\n6. 评估")
- eval_start = time.time()
- point_cloud_path = os.path.join(img_folder, 'cloudpoint.txt')
- json_path = os.path.join(img_folder, 'result.json')
- theta_notch = 0
- get_eval_result(point_cloud_path, json_path, theta_notch, 0)
- eval_end = time.time()
- print(f" 完成时间: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
- print(f" 耗时: {eval_end - eval_start:.2f} 秒")
- return True
- if __name__ == '__main__':
- config_path = 'config\\cfg_3freq_wafer.json'
- img_folder = 'D:\\data\\four_cam\\0927_storage\\20240927161651920'
- pmdstart(config_path, img_folder)
|