123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613 |
- #encoding=utf-8
- import time
- import os
- import sys
- import pandas as pd
- sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
- import time
- import glob
- import numpy as np
- np.random.seed(42)
- from datetime import datetime
- import json
- from src.utils import get_meshgrid, get_world_points, get_camera_points, get_screen_points, write_point_cloud, get_white_mask, get_meshgrid_contour, post_process, find_notch, post_process_with_grad
- from src.phase import extract_phase, unwrap_phase
- from src.recons import reconstruction_cumsum, poisson_recons_with_smoothed_gradients
- from src.pcl_postproc import smooth_pcl, align2ref
- import matplotlib.pyplot as plt
- from src.calibration import calibrate_world, calibrate_screen_chessboard, calibrate_screen_circlegrid, map_screen_to_world
- from src.calibration.get_camera_params import calibrate_world_aprilgrid
- import argparse
- from src.vis import plot_coords
- import cv2
- from src.eval import get_eval_result
- import pickle
- from collections import defaultdict
- from scipy.io import loadmat, savemat
- from scipy.optimize import minimize
- import copy
- def pmdstart(config_path, img_folder):
- start_time = time.time()
- print(f"config_path: {config_path}")
- #time.sleep(15)
- main(config_path, img_folder)
- print(f"img_folder: {img_folder}")
- print('test pass')
- end_time = time.time()
- print(f"Time taken: {end_time - start_time} seconds")
- return True
- def optimize_calibration_with_gradient_constraint(cam_params, screen_params, point_cloud, gradient_data, config_path):
- # 只使用屏幕参数(旋转矩阵和平移向量)
- initial_params = np.concatenate([
- screen_params['screen_rotation_matrix'].flatten(),
- screen_params['screen_translation_vector'].flatten()
- ])
- # 定义屏幕参数的尺度因子
- scale_factors = np.ones_like(initial_params)
- scale_factors[0:9] = 1.0 # 旋转矩阵
- scale_factors[9:] = 100.0 # 平移向量(假设单位是毫米)
- # 归一化初始参数
- normalized_params = initial_params / scale_factors
- iteration_count = [0]
- print("\nInitial screen parameters:")
- print(f"Rotation matrix:\n{screen_params['screen_rotation_matrix']}")
- print(f"Translation vector:\n{screen_params['screen_translation_vector']}")
- def objective_function(normalized_params):
- try:
- # 反归一化参数
- params = normalized_params * scale_factors
-
- iteration_count[0] += 1
- print(f"\nIteration {iteration_count[0]}:")
-
- # 解析屏幕参数
- screen_R = params[:9].reshape(3, 3)
- screen_T = params[9:].reshape(3, 1)
-
- # 构建参数字典
- temp_cam_params = [{
- 'camera_matrix': cam_params['camera_matrix'],
- 'distortion_coefficients': cam_params['distortion_coefficients'],
- 'rotation_matrix': cam_params['rotation_matrix'],
- 'rotation_vector': cam_params['rotation_vector'],
- 'translation_vector': cam_params['translation_vector']
- }]
-
- temp_screen_params = {
- 'screen_matrix': screen_params['screen_matrix'],
- 'screen_distortion': screen_params['screen_distortion'],
- 'screen_rotation_matrix': screen_R,
- 'screen_rotation_vector': cv2.Rodrigues(screen_R)[0],
- 'screen_translation_vector': screen_T
- }
- if iteration_count[0] % 5 == 0: # 每5次迭代打印一次详细信息
- print("\nCurrent screen parameters:")
- print(f"Rotation matrix:\n{screen_R}")
- print(f"Translation vector:\n{screen_T.flatten()}")
- try:
- reconstructed_points, reconstructed_gradients = reconstruct_surface(
- temp_cam_params,
- temp_screen_params,
- config_path,
- img_folder
- )
-
- # 只计算平面度误差
- planarity_error = compute_planarity_error(reconstructed_points)
- total_error = planarity_error
-
- print(f"Planarity error: {planarity_error:.6f}")
-
- # 监控点云变化
- if hasattr(objective_function, 'prev_points'):
- point_changes = reconstructed_points - objective_function.prev_points
- print(f"Max point change: {np.max(np.abs(point_changes)):.8f}")
- print(f"Mean point change: {np.mean(np.abs(point_changes)):.8f}")
- objective_function.prev_points = reconstructed_points.copy()
-
- return total_error
-
- except Exception as e:
- print(f"Error in reconstruction: {str(e)}")
- import traceback
- traceback.print_exc()
- return 1e10
-
- except Exception as e:
- print(f"Error in parameter processing: {str(e)}")
- import traceback
- traceback.print_exc()
- return 1e10
- # 设置边界(只针对屏幕参数)
- bounds = []
- # 旋转矩阵边界
- for i in range(9):
- bounds.append((normalized_params[i]-0.5, normalized_params[i]+0.5))
- # 平移向量边界
- for i in range(3):
- bounds.append((normalized_params[i+9]-0.5, normalized_params[i+9]+0.5))
- # 优化
- result = minimize(
- objective_function,
- normalized_params,
- method='L-BFGS-B',
- bounds=bounds,
- options={
- 'maxiter': 100,
- 'ftol': 1e-8,
- 'gtol': 1e-8,
- 'disp': True,
- 'eps': 1e-3
- }
- )
- # 反归一化获取最终结果
- final_params = result.x * scale_factors
-
- # 构建最终的参数字典
- optimized_screen_params = {
- 'screen_matrix': screen_params['screen_matrix'],
- 'screen_distortion': screen_params['screen_distortion'],
- 'screen_rotation_matrix': final_params[:9].reshape(3, 3),
- 'screen_rotation_vector': cv2.Rodrigues(final_params[:9].reshape(3, 3))[0],
- 'screen_translation_vector': final_params[9:].reshape(3, 1)
- }
-
- print("\nOptimization completed!")
- print("Final screen parameters:")
- print(f"Rotation matrix:\n{optimized_screen_params['screen_rotation_matrix']}")
- print(f"Translation vector:\n{optimized_screen_params['screen_translation_vector']}")
-
- return cam_params, optimized_screen_params
- def compute_planarity_error(points):
- """计算点云的平面度误差"""
- # 移除中心
- centered_points = points - np.mean(points, axis=0)
-
- # 使用SVD找到最佳拟合平面
- _, s, vh = np.linalg.svd(centered_points)
-
- # 最奇异值表示点到平面的平均距离
- planarity_error = s[2] / len(points)
-
- return planarity_error
- # 在主程序中使用
- def optimize_parameters(cam_params, screen_params, point_cloud, gradient_data):
- """
- 优化参数的包装函数
- """
- print("开始优化标定参数...")
-
- # 保存原始参数
- original_cam_params = copy.deepcopy(cam_params)
- original_screen_params = copy.deepcopy(screen_params)
-
- try:
- # 执行优化
- new_cam_params, new_screen_params = optimize_calibration_with_gradient_constraint(
- cam_params,
- screen_params,
- point_cloud,
- gradient_data,
- config_path
- )
-
- # 打印优化前后的参数变化
- print("\n参数优化结果:")
- print("机内参变化:")
- print("原始值:\n", original_cam_params['camera_matrix'])
- print("优化后:\n", new_cam_params['camera_matrix'])
-
- print("\n屏幕姿态变化:")
- print("原始平移向量:", original_screen_params['screen_translation_vector'])
- print("优化后平移向量:", new_screen_params['screen_translation_vector'])
-
- return new_cam_params, new_screen_params
-
- except Exception as e:
- print("优化过程出错:")
- print(f"错误类型: {type(e).__name__}")
- print(f"错误信息: {str(e)}")
- print("错误详细信息:")
- import traceback
- traceback.print_exc()
- return original_cam_params, original_screen_params
- def optimization_callback(xk):
- """
- 优化过程的回调函数,用于监控优化进度
- """
- global iteration_count
- iteration_count += 1
-
- # 每10次迭代打印一次当前误差
- if iteration_count % 10 == 0:
- error = objective_function(xk)
- print(f"Iteration {iteration_count}, Error: {error:.6f}")
-
- # 可以保存中间结果
- points, grads = reconstruct_surface(...)
- np.save(f'intermediate_points_{iteration_count}.npy', points)
- np.save(f'intermediate_grads_{iteration_count}.npy', grads)
- def validate_optimization(original_points, original_grads,
- optimized_points, optimized_grads):
- """
- 验证优化结果
- """
- # 计算平面度改善
- original_planarity = compute_planarity_error(original_points)
- optimized_planarity = compute_planarity_error(optimized_points)
-
- # 计算梯度改善 - 使用法向量梯度
- original_gradient_error = np.sum(np.abs(original_grads[:, 2:])) # gx, gy
- optimized_gradient_error = np.sum(np.abs(optimized_grads[:, 2:]))
-
- print("\n优化结果验证:")
- print(f"平面度误差: {original_planarity:.6f} -> {optimized_planarity:.6f}")
- print(f"梯度误差: {original_gradient_error:.6f} -> {optimized_gradient_error:.6f}")
-
- # 可视化结
- fig = plt.figure(figsize=(15, 5))
-
- # 原始点云
- ax1 = fig.add_subplot(131, projection='3d')
- ax1.scatter(original_points[:, 0], original_points[:, 1], original_points[:, 2],
- c=original_grads[:, 2], cmap='viridis')
- ax1.set_title('Original Surface')
-
- # 优化后点云
- ax2 = fig.add_subplot(132, projection='3d')
- ax2.scatter(optimized_points[:, 0], optimized_points[:, 1], optimized_points[:, 2],
- c=optimized_grads[:, 2], cmap='viridis')
- ax2.set_title('Optimized Surface')
-
- # 梯度分布对比
- ax3 = fig.add_subplot(133)
- ax3.hist([original_grads[:, 2], optimized_grads[:, 2]],
- label=['Original', 'Optimized'], bins=50, alpha=0.7)
- ax3.set_title('Gradient Distribution')
- ax3.legend()
-
- plt.tight_layout()
- plt.show()
- def reconstruct_surface(cam_params, screen_params, config_path, img_folder):
- # 添加参数验证
- # print("\nDebug - reconstruct_surface input parameters:")
- # print("Camera parameters:")
- # print(f"Matrix:\n{cam_params[0]['camera_matrix']}")
- # print(f"Translation:\n{cam_params[0]['translation_vector']}")
-
- cfg = json.load(open(config_path, 'r'))
- n_cam = cfg['cam_num']
- grid_spacing = cfg['grid_spacing']
- num_freq = cfg['num_freq']
-
- x_uns, y_uns = [], []
- binary_masks = []
-
- for cam_id in range(n_cam):
- print('cam_id = ', cam_id)
- # 验证使用的是传入的参数而不是其他来源
- #print(f"\nUsing camera parameters for camera {cam_id}:")
- #print(f"Matrix:\n{cam_params[cam_id]['camera_matrix']}")
-
- white_path = os.path.join(img_folder, f'{cam_id}_frame_24.bmp')
- #binary = get_white_mask(white_path, bin_thresh=82, size_thresh=0.5, debug=0) #凹 凸 平晶 平面镜
- binary = get_white_mask(white_path, bin_thresh=40, size_thresh=0.8, debug=0)
- #binary = get_white_mask(white_path, bin_thresh=30, size_thresh=0.8, debug=0) #四相机
- binary_masks.append(binary)
- mtx = cam_params[cam_id]['camera_matrix']
- dist_coeffs = cam_params[cam_id]['distortion_coefficients']
- phases = extract_phase(img_folder, cam_id, binary, mtx, dist_coeffs, num_freq)
- x_un, y_un = unwrap_phase(phases, num_freq, debug=0)
- x_uns.append(x_un)
- y_uns.append(y_un)
-
- np.save('./x_phase_unwrapped_python.npy', x_un)
- np.save('./y_phase_unwrapped_python.npy', y_un)
-
- if n_cam == 1:
- #screen_to_world = map_screen_to_world(screen_params, cam_params[0], -30, 10, 80)
- #screen_to_world = map_screen_to_world(screen_params, cam_params[0], -10, -10, 20)
- screen_to_world = map_screen_to_world(screen_params, cam_params[0], 0, 0, 0)
- elif n_cam == 4:
- screen_to_world = map_screen_to_world(screen_params, cam_params[3], 0, 0, 0)
- else:
- print('camera number should be 1 or 4')
- return 0
-
- print("\n4. 获得不同坐标系下点的位置")
- total_cloud_point = np.empty((0, 3))
- total_gradient = np.empty((0, 4))
-
- for i in range(n_cam):
- print('cam_id = ', i)
- contours_point = get_meshgrid_contour(binary_masks[i], debug=0)
- world_points, world_points_boundary, world_points_boundary_3 = get_world_points(contours_point, cam_params[i], i, grid_spacing, cfg['d'], erosion_pixels=0, debug=0)
- camera_points, u_p, v_p = get_camera_points(world_points, cam_params[i], i, debug=0)
- point_data = {'x_w': world_points[:, 0], 'y_w': world_points[:, 1], 'z_w': world_points[:, 2],
- 'x_c': camera_points[:, 0], 'y_c': camera_points[:, 1], 'z_c': camera_points[:, 2],
- 'u_p': u_p, 'v_p': v_p}
- screen_points = get_screen_points(point_data, x_uns[i], y_uns[i], screen_to_world, cfg, i, debug=0)
-
- # 添加调试信息
- # print(f"\nDebug - Reconstruction:")
-
-
- # print(f"Camera points shape: {camera_points.shape}")
- # print(f"Screen points shape: {screen_points.shape}")
- #ds(world_points, camera_points, screen_points)
- #plot_coords(world_points, camera_points, screen_points)
-
- z1_cumsum, gradient_xy = reconstruction_cumsum(world_points, camera_points, screen_points, debug=0)
- write_point_cloud(os.path.join(img_folder, str(i) + '_cloudpoint.txt'), np.round(z1_cumsum[:, 0]), np.round(z1_cumsum[:, 1]), z1_cumsum[:, 2])
- np.savetxt(os.path.join(img_folder, str(i) + '_gradient.txt'), gradient_xy, fmt='%.10f', delimiter=',')
- total_cloud_point = np.vstack([total_cloud_point, np.column_stack((z1_cumsum[:, 0], z1_cumsum[:, 1], z1_cumsum[:, 2]))])
- total_gradient = np.vstack([total_gradient, np.column_stack((gradient_xy[:, 0], gradient_xy[:, 1], gradient_xy[:, 2], gradient_xy[:, 3]))])
- # 检查返回值
- # print(f"z1_cumsum shape: {z1_cumsum.shape}")
- # print(f"gradient_xy shape: {gradient_xy.shape}")
- # print(f"Sample z1_cumsum values:\n{z1_cumsum[:3]}")
-
- return total_cloud_point, total_gradient
-
- def main(config_path, img_folder):
- current_dir = os.path.dirname(os.path.abspath(__file__))
- os.chdir(current_dir)
- cfg = json.load(open(config_path, 'r'))
- n_cam = cfg['cam_num']
-
-
- matlab_align = 0
- if n_cam == 4:
- screen_img_path = 'D:\\data\\four_cam\\calibrate\\cam3-screen-1008'
- camera_img_path = 'D:\\data\\four_cam\\calibrate\\calibrate-1016'
- elif n_cam == 1:
- camera_img_path = 'D:\\data\\one_cam\\padtest1125\\test1\\'
- screen_img_path = 'D:\\data\\one_cam\\pad-test-1125\\test4\\calibration\\screen\\'
- print(f"开始执行时间: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
- print("\n1. 机标定")
- preprocess_start = time.time()
- cam_para_path = os.path.join(current_dir, 'config', cfg['cam_params'])
- print('cam_para_path = ', cam_para_path)
- if os.path.exists(cam_para_path):
- #if False:
- with open(cam_para_path, 'rb') as pkl_file:
- cam_params = pickle.load(pkl_file)
- else:
- if n_cam == 4:
- cam_params = []
- camera_subdir = [item for item in os.listdir(camera_img_path) if os.path.isdir(os.path.join(camera_img_path, item))]
- camera_subdir.sort()
- assert len(camera_subdir) == 4, f"found {len(camera_subdir)} cameras, should be 4"
- for i in range(n_cam):
- cam_img_path = glob.glob(os.path.join(camera_img_path, camera_subdir[i], "*.bmp"))
- cam_img_path.sort()
- cam_param_raw = calibrate_world_aprilgrid(cam_img_path, cfg['world_chessboard_size'], cfg['world_square_size'], cfg['world_square_spacing'], debug=1)
- cam_params.append(cam_param_raw)
- with open(cam_para_path, 'wb') as pkl_file:
- pickle.dump(cam_params, pkl_file)
- elif n_cam == 1:
- cam_params = []
- cam_img_path = glob.glob(os.path.join(camera_img_path, "*.bmp"))
- cam_img_path.sort()
- if matlab_align:
- cfg['world_chessboard_size'] = [41, 40]
- cfg['world_square_size'] = 2
- cam_param_raw = calibrate_world(cam_img_path, cfg['world_chessboard_size'], cfg['world_square_size'], debug=1)
- cam_params.append(cam_param_raw)
- with open(cam_para_path, 'wb') as pkl_file:
- pickle.dump(cam_params, pkl_file)
- print('raw cam_param = ', cam_params)
- print("\n2. 屏幕标定")
- screen_cal_start = time.time()
- screen_img_path = glob.glob(os.path.join(screen_img_path, "*.bmp"))
- screen_para_path = os.path.join('config', cfg['screen_params'])
- if os.path.exists(screen_para_path):
- #if False:
- with open(screen_para_path, 'rb') as pkl_file:
- screen_params = pickle.load(pkl_file)
- else:
- if n_cam == 3:
- screen_params = calibrate_screen_chessboard(screen_img_path, cam_params[3]['camera_matrix'], cam_params[3]['distortion_coefficients'], cfg['screen_chessboard_size'], cfg['screen_square_size'], debug=0)
- elif n_cam == 1:
- raw_cam_mtx = cam_params[0]['camera_matrix']
- screen_params = calibrate_screen_circlegrid(screen_img_path, raw_cam_mtx, cam_params[0]['distortion_coefficients'], cfg['screen_chessboard_size'], cfg['screen_square_size'], debug=1)
- with open(screen_para_path, 'wb') as pkl_file:
- pickle.dump(screen_params, pkl_file)
-
- screen_cal_end = time.time()
- print(f" 完成时间: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
- print(f" 耗时: {screen_cal_end - screen_cal_start:.2f} s")
-
- total_cloud_point, total_gradient = reconstruct_surface(cam_params, screen_params, config_path, img_folder)
-
- print("\n5. 后处理")
- post_process_start = time.time()
- total_cloud_point[:,0] = np.round(total_cloud_point[:,0])
- total_cloud_point[:,1] = np.round(total_cloud_point[:,1])
- #fitted_points = post_process(total_cloud_point, debug=0)
- clout_points = post_process_with_grad(img_folder, n_cam, 1)
- fitted_points = total_cloud_point
- align_fitted = fitted_points
-
- write_point_cloud(os.path.join(img_folder, 'cloudpoint.txt'), np.round(clout_points[:, 0]-np.mean(clout_points[:, 0])), np.round(clout_points[:, 1]-np.mean(clout_points[:, 1])), 1000 * clout_points[:,2])
-
- print("\n6. 评估")
- eval_start = time.time()
- point_cloud_path = os.path.join(img_folder, 'cloudpoint.txt')
- json_path = os.path.join(img_folder, 'result.json')
- theta_notch = 0
- get_eval_result(point_cloud_path, json_path, theta_notch, 1)
- eval_end = time.time()
- print(f" 完成时间: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
- print(f" 耗时: {eval_end - eval_start:.2f} 秒")
- # new_cam_params, new_screen_params = optimize_parameters(
- # cam_params[0], # 假设单相系统
- # screen_params,
- # total_cloud_point,
- # total_gradient
- # )
- #print('after optimazation:', new_cam_params, new_screen_params)
- #total_cloud_point, total_gradient = reconstruct_surface(cam_params, screen_params, config_path)
- #print('cam_params = ', cam_params)
- #print('screen_params = ', screen_params)
-
- # print("\n3. 相位提取,相位展开")
- # phase_start = time.time()
-
- # scales = [0.995291, 0.993975, 0.993085, 0.994463]
- # scales = [1,1,1,1]
-
-
- # phase_end = time.time()
- # print(f" 完成时间: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
- # print(f" 耗时: {phase_end - phase_start:.2f} 秒")
- # z_raw_xy = np.round(z_poisson[:, :2]).astype(int)
-
- # #创建布尔掩码,初始为 True
- # mask = np.ones(len(z_raw_xy), dtype=bool)
- # # 使用掩码过滤出非边界点
- # non_boundary_points = z_poisson[mask]
-
- # z_raw_aligned, _ = align2ref(non_boundary_points)
- # #non_boundary_points = smoothed
- # write_point_cloud(os.path.join(img_folder, str(i) + '_cloudpoint.txt'), np.round(z_raw_aligned[:, 0]), np.round(z_raw_aligned[:, 1]), z_raw_aligned[:, 2])
- # np.savetxt(os.path.join(img_folder, str(i) + '_gradient.txt'), gradient_xy, fmt='%.10f', delimiter=',')
- # total_cloud_point = np.vstack([total_cloud_point, np.column_stack((z_raw_aligned[:, 0], z_raw_aligned[:, 1], z_raw_aligned[:, 2]))])
- # total_gradient = np.vstack([total_gradient, np.column_stack((gradient_xy[:, 0], gradient_xy[:, 1], gradient_xy[:, 2], gradient_xy[:, 3]))])
-
- # get_point_end = time.time()
- # print(f" 完成时间: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
- # print(f" 耗时: {get_point_end - get_point_start:.2f} 秒")
-
-
- # if 0:
- # fig = plt.figure()
- # ax = fig.add_subplot(111, projection='3d')
- # # 提取 x, y, z 坐标
- # x_vals = np.round(fitted_points[:, 0]-np.mean(fitted_points[:, 0]))
- # y_vals = np.round(fitted_points[:, 1]-np.mean(fitted_points[:, 1]))
- # z_vals = align_fitted[:,2]-np.min(align_fitted[:,2])
- # x_vals = fitted_points[:, 0]
- # y_vals = fitted_points[:, 1]
- # z_vals = fitted_points[:, 2]
- # # 绘制3D点云
- # ax.scatter(x_vals, y_vals, z_vals, c=z_vals, cmap='viridis', marker='o')
- # # 设置轴标签和标题
- # ax.set_xlabel('X (mm)')
- # ax.set_ylabel('Y (mm)')
- # ax.set_zlabel('Z (mm)')
- # ax.set_title('post 3D Point Cloud Visualization')
- # plt.show()
-
- # post_process_end = time.time()
- # print(f" 完成时间: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
- # print(f" 耗时: {post_process_end - post_process_start:.2f} 秒")
-
- return True
- if __name__ == '__main__':
- #config_path = 'config\\cfg_3freq_wafer_1226.json'
- config_path = 'config\\cfg_3freq_wafer_1226.json'
-
- #config_path = 'config\\cfg_3freq_wafer_matlab.json'
- img_folder = 'D:\\data\\one_cam\\pad-test-1125\\test4\\pingjing\\'
- img_folder = 'D:\\data\\one_cam\\pad-test-1106\\1104-test-other\\'
- #img_folder = 'D:\\data\\one_cam\\pad-test-1125\\test7-4\\20241213183308114\\' #凸
- #img_folder = 'D:\\data\\one_cam\\pad-test-1125\\test7-4\\20241213183451799\\' #凹
- img_folder = 'D:\\data\\one_cam\\pad-test-1125\\test7-4\\20241213182959977\\' #平面镜
- img_folder = 'D:\\data\\one_cam\\pad-test-1125\\test7-4\\20241219180143344\\' #平晶
- #img_folder = 'D:\\data\\four_cam\\1223\\20241223134629640-0\\' #晶圆
- #img_folder = 'D:\\data\\four_cam\\1223\\20241223135156305-1\\' #晶圆
- #img_folder = 'D:\\data\\four_cam\\1223\\20241223135626457-2-0\\' #晶圆
- img_folder = 'D:\\data\\four_cam\\1223\\20241223135935517-2-1\\' #晶圆
- #img_folder = 'D:\\data\\four_cam\\1223\\20241223172437775-2-0\\' #晶圆
- #img_folder = 'D:\\data\\four_cam\\1223\\20241223172712226-2-1\\' #晶圆
- # img_folder = 'D:\\data\\four_cam\\1223\\20241223172931654-1\\' #晶圆
- img_folder = 'D:\\data\\four_cam\\1223\\20241223173521117-0\\' #晶圆
- #img_folder = 'D:\\data\\four_cam\\betone_1011\\20241011142901251-2\\'
- # img_folder = 'D:\\data\\one_cam\\1226image\\20241226142937478\\' #凹
- # #img_folder = 'D:\\data\\one_cam\\1226image\\20241226143014962\\' #凸
- # #img_folder = 'D:\\data\\one_cam\\1226image\\20241226143043070\\' #平面镜
- # #img_folder = 'D:\\data\\one_cam\\1226image\\20241226142826690\\' #平晶
- # img_folder = 'D:\\data\\one_cam\\1226image\\20241226143916513\\' #晶圆
- # #img_folder = 'D:\\data\\one_cam\\1226image\\20241226144357273\\'
- # img_folder = 'D:\\data\\one_cam\\1226image\\20241226144616239\\'
- img_folder = 'D:\\data\\one_cam\\betone1230\\20241230110516029\\'
- img_folder = 'D:\\data\\one_cam\\betone1230\\20241230110826833\\' #2
- #img_folder = 'D:\\data\\one_cam\\betone1230\\20241230111002224\\'
-
- #img_folder = 'D:\\data\\one_cam\\betone1230\\20250103151342402-pingjing\\'
-
- # img_folder = 'D:\\data\\one_cam\\betone1230\\20250102181845157-1\\'
- #img_folder = 'D:\\data\\one_cam\\betone1230\\20250102181648331-2\\'
- #img_folder = 'D:\\data\\one_cam\\betone1230\\20250102182008126-3\\'
- json_path = os.path.join(img_folder, 'result.json')
- pmdstart(config_path, img_folder)
-
-
|